CMR:
a) x2+y2= (x-y)2+2xy
b) (x+y)2=(x-y)2+4xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3x\left(2x-y\right)+5y\left(y-2x\right)\)
\(=3x\left(2x-y\right)-5y\left(2x-y\right)\)
\(=\left(3x-5y\right)\left(2x-y\right)\)
b) \(\left(x-5\right)^2-9\left(x+y\right)^2\)
\(=\left(x-5\right)^2-3^2\left(x+y\right)^2\)
\(=\left(x-5\right)^2-\left(3x+3y\right)^2\)
\(=\left(x-5+3x+3y\right)\left(x-5-3x-3y\right)\)
\(=\left(4x+3y-5\right)\left(-2x-3y-5\right)\)
a: \(3x\left(2x-y\right)+5y\left(y-2x\right)=\left(2x-y\right)\left(3x-5y\right)\)
e: \(x^2-10x+24=\left(x-4\right)\left(x-6\right)\)
\(P=\left(x+2y\right)^2-2\left(x+2y\right)\left(y-1\right)+\left(y-1\right)^2\\ P=\left(x+2y-y+1\right)^2=\left(x+y+1\right)^2\\ Q.sai.đề\\ M=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\\ M=1^3-3xy\left(x+y-1\right)=1-3xy\left(1-1\right)=1-0=1\\ x+y=2\Leftrightarrow\left(x+y\right)^2=4\\ \Leftrightarrow x^2+y^2+2xy=4\\ \Leftrightarrow2xy=4-10=-6\\ \Leftrightarrow xy=-3\\ N=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\\ N=2\left(10+3\right)=2\cdot13=26\)
\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)\)
\(=1+x^2+y^2+x^2y^2+4xy+2\left(x+y\right)\left(1+xy\right)\)
\(=\left(x^2+y^2+2xy\right)+\left(x^2y^2+2xy+1\right)+2\left(x+y\right)\left(1+xy\right)\)
\(=\left(x+y\right)^2+\left(1+xy\right)^2+2\left(x+y\right)\left(1+xy\right)\)
\(=\left(x+y+1+xy\right)^2\) là SCP
(1+x2)(1+y2)+4xy+2(x+y)(1+xy)
= 1+y2+x2+x2y2+2xy+2xy+2(x+y)(1+xy)
=(x2+2xy+y2)+(x2y2+2xy+1)+2(x+y)(1+xy)
=(x+y)2+(xy+1)2+2(x+y)(1+xy)
=(x+y+xy+1)2
a) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1=\left(x^2+3x+1\right)^2\)
b) \(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\Leftrightarrow1+x^2+y^2+x^2y^2+4xy+2\left(x+y\right)\left(1+xy\right)-25=0\Leftrightarrow\left(x+y\right)^2+2\left(x+y\right)\left(1+xy\right)+\left(1+xy\right)^2-25=0\Leftrightarrow\left(x+y+1+xy\right)^2-25=0\Leftrightarrow\left(x+y+xy-24\right)\left(x+y+xy+26\right)=0\)
a: Ta có: \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
`a, A= 4xy -xy-2xy`
`= (4-1-2)xy`
`= xy`
Thay `x=2;y=3`
Ta có : `xy=2*3=6`
`b, B= x^2 y -7x^2y-4x^2y`
`=(1-7-4)x^2y`
`= -10x^2y`
Thay `x=2;y=3`
Ta có : `-10x^2y=-10*2^2 *3= -10*4*3=-40*3=-120`
`c, C=10x^2y -x^2y-7x^2y`
`=(10-1-7)x^2y`
`= 2x^2y`
Thay `x=2;y=3`
Ta có : `2x^2y=2*2^2 *3= 2*4*3=8*3=24`
`d,D=5x^2y^2-12x^2y^2+8x^2y^2`
`= (5-12+8)x^2y^2`
`=x^2y^2`
Thay `x=2;y=3`
ta có : `x^2y^2=2^2 *3^2= 4* 9=36`
có chỗ nào bn đọc ko rõ thì ns mik nha, để mik gõ ra cho bn rõ hơn
a) \(\left(x-y\right)^2+2xy\)
\(=x^2-2xy+y^2+2xy\)
\(=x^2+y^2\left(đpcm\right)\)
b) \(\left(x-y\right)^2+4xy\)
\(=x^2-2xy+y^2+4xy\)
\(=x^2+2xy+y^2\)
\(=\left(x+y\right)^2\left(đpcm\right)\)
a, Ta có:\(\left(x-y\right)^2=x^2-2xy+y^2\)
\(\Leftrightarrow x^2+y^2=\left(x-y\right)^2+2xy\left(ĐCCM\right)\)
b,Ta có:\(\left(x+y\right)^2=x^2+2xy+y^2\)
\(\Leftrightarrow\left(x+y\right)^2=x^2-2xy+4xy+y^2\)
\(\Leftrightarrow\left(x+y\right)^2=\left(x-y\right)^2+4xy\left(ĐCCM\right)\)