Cho x, y là các số dương.CMR: x+y-2×(căn x +căn y)+2>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+0}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2\left(x+y+z\right)}{xyz}}\)
\(=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{zx}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)
\(=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\) là số hữu tỉ
Đặt vế trái là P
Ta có: \(P=\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+2\right)-3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+2=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2-3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+2\)
Đặt \(a=\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt[]{\dfrac{xy}{xy}}=2\Rightarrow a-2\ge0\)
\(\Rightarrow P=a^2-3a+2=\left(a-2\right)\left(a-1\right)\ge0\) (đpcm)
Dấu "=" xảy ra khi \(a=2\) hay \(x=y\)
\(\frac{\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}}{\sqrt{x+y+z}}\)
\(x+y-2\left(\sqrt{x}+\sqrt{y}\right)+2\ge0\)
\(\Leftrightarrow x+y-2\sqrt{x}-2\sqrt{y}+2\ge0\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-2\sqrt{y}+1\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2\ge0\)
Do : \(\left\{{}\begin{matrix}\left(\sqrt{x}-1\right)^2\ge0\\\left(\sqrt{y}-1\right)^2\ge0\end{matrix}\right.\Rightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2\ge0\)
Vậy đẳng thức được chứng minh !