Cho tam giác ABC, D thuộc cạnh AB, đường thẳng đi qua D // BC cắt AC tại E và cắt đường thẳng đi qua C // với AB tại H. Qua H kẻ đường thẳng // AB cắt BC tại I. Chứng minh:
a) DA/CG = DE/EG
b) DA.EG = DB.DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác AEBH có
AB//HE(gt)
AE//BH(gt)
Do đó: AEBH là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: AB=HE(Hai cạnh đối trong hình bình hành AEBH)(1)
Xét tứ giác AGHC có
AG//HC(gt)
AC//GH(gt)
Do đó: AGHC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: AC=HG(Hai cạnh đối trong hình bình hành)(2)
mà AB=AC(ΔABC cân tại A)(3)
nên từ (1), (2) và (3) suy ra HG=HE
Xét ΔHGE có HG=HE(cmt)
nên ΔHGE cân tại H(Định nghĩa tam giác cân)
a. Xét tam giác ABC có:
DE//BC (gt)
=>\(\dfrac{DA}{DB}=\dfrac{EA}{EC}\)(định lý Ta-let) (1)
Xét tam giác ADE có:
AD//CF (gt)
=>\(\dfrac{EA}{EC}=\dfrac{DE}{EF}\)(định lý Ta-let) (2)
Từ (1) và (2) suy ra:\(\dfrac{DA}{DB}=\dfrac{ED}{FE}\)
Sửa đề: DE//BC
a) Xét ΔABC có
D∈AB(gt)
E∈AC(gt)
DE//BC(gt)
Do đó: \(\dfrac{AD}{AB}=\dfrac{DE}{BC}\)(Hệ quả của Định lí ta lét)
\(\Leftrightarrow\dfrac{3}{5}=\dfrac{DE}{10}\)
hay DE=6(cm)
Vậy: DE=6cm
a: Xét ΔABC vuông tại A và ΔDMC vuông tại D có
góc C chung
=>ΔABC đồng dạng với ΔDMC
=>AB/DM=BC/MC=AC/DC
=>6/DM=10/MC=8/3
=>DM=6:8/3=2,25cm và MC=10:8/3=10*3/8=30/8=3,75cm
b: Xét ΔABC vuông tại A và ΔMBE vuông tại M có
góc B chung
=>ΔABC đồng dạng với ΔMBE
=>BA/BM=BC/BE
=>BA*BE=BM*BC
a: Xét tứ giác BDGC có
BD//GC
BC//GD
=>BDGC là hình bình hành
=>BD=GC
AD//GC
=>AD/CG=DE/EG
=>AD*EG=DE*CG
=>AD*EG=DE*DB
b: DE//CB
=>BD/BA=CE/CA
AB//CG
=>CG/AB=CH/HA
=>BD/BA=CH/HA
=>CE/CA=CH/HA=HE/CH
=>HC^2=HE*HA
Nhanh giúp mình với. Mình cần gấp
đường thẳng đi qua D // BC cắt AC tại E và cắt đường thẳng đi qua C // với AB tại H. Qua H kẻ đường thẳng // AB cắt BC tại I.
cài này vẽ hình kiểu j vậy or sai đề hả ?