So sánh phân số\(\frac{1010}{6161}\) Và \(\frac{101}{616}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e) \(\frac{15}{16}=\frac{15.1010}{16.1010}=\frac{15150}{16160}=1-\frac{1010}{16160}\)
\(\frac{15151}{16161}=1-\frac{1010}{16161}\)
Vì \(16160< 16161\)\(\Rightarrow\frac{1}{16160}>\frac{1}{16161}\)
\(\Rightarrow\frac{1010}{16160}>\frac{1010}{16161}\)\(\Rightarrow1-\frac{1010}{16160}< 1-\frac{1010}{16161}\)
hay \(\frac{15}{16}< \frac{15151}{16161}\)
Ta có : Q=\(\frac{1010+1011+1012}{1011+1012+1013}\)=\(\frac{1010}{1011+1012+1013}+\frac{1011}{1011+1012+1013}+\frac{1012}{1011+1012+1013}\)
Vì1010/1011>1010/1011+1012+1013
1011/1012>1011/1011+1012+1013
1012/1013>1012/1011+1012+1013
=>P>Q
\(20A=\dfrac{20^{101}-1-19}{20^{101}-1}=1-\dfrac{19}{20^{101}-1}\)
\(20B=\dfrac{20^{102}-1-19}{20^{102}-1}=1-\dfrac{19}{20^{102}-1}\)
mà \(\dfrac{-19}{20^{101}-1}< \dfrac{-19}{20^{102}-1}\)
nên A<B
\(\frac{20^{101}-1}{20^{102}-1}>\frac{20^{101}-20}{20^{102}-20}=\frac{20.\left(20^{100}-1\right)}{20.\left(20^{101}-1\right)}=\frac{20^{100}-1}{20^{101}-1}\)
\(\Rightarrow\frac{20^{101}-1}{20^{102}-1}>\frac{20^{100}-1}{20^{101}-1}\)
Ta có:
\(M=\frac{101^{102}+1}{101^{103}+1}\)
\(101M=\frac{101^{103}+1+100}{101^{103}+1}=1+\frac{100}{101^{103}+1}\)
Ta lại có:
\(N=\frac{101^{103}+1}{101^{104}+1}\)
\(101N=\frac{101^{104}+1+100}{101^{104}+1}=1+\frac{100}{101^{104}+1}\)
Vì \(\frac{100}{101^{104}+1}< \frac{100}{101^{103}+1}\Rightarrow101N< 101M\Rightarrow N< M\)
\(\frac{1010}{6161}< \frac{101}{616}\)
nhân cả tử và mẫu của phân số \(\frac{101}{616}\) ta có phân số \(\frac{1010}{6160}\)
Vì 2 phân số \(\frac{1010}{6161}\) và \(\frac{1010}{6160}\)có cùng tử số và khác mẫu số nên phân số có mẫu bè hơn thì lớn hơn
\(\Rightarrow\) \(\frac{1010}{6160}\)> \(\frac{1010}{6161}\)
\(\Rightarrow\)\(\frac{101}{616}\)> \(\frac{1010}{6161}\)