Tìm x :
a ) x2006 = x2
b ) 2x + 2 - 2x = 96
c ) x. ( x2 )3 = x5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =2x^3-3x-5x^3-x^2-x^2
=-3x^3-2x^2-3x
b: =2(x^2+x-6)+x^2-4x+4+x^2+6x+9
=2x^2+2x-12+2x^2+2x+13
=4x^2+4x+1
d: =4x^2-9-x^2-10x-25-x^2-x+2
=2x^2-11x-32
Bài 1:
a: \(A=x^2+2x+4\)
\(=x^2+2x+1+3\)
\(=\left(x+1\right)^2+3>=3\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
Vậy: \(A_{min}=3\) khi x=-1
b: \(B=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1>=1\forall x\)
Dấu '=' xảy ra khi x-10=0
=>x=10
Vậy: \(B_{min}=1\) khi x=10
c: \(C=x^2-2x+y^2+4y+8\)
\(=x^2-2x+1+y^2+4y+4+3\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\forall x\)
Dấu '=' xảy ra khi x-1=0 và y+2=0
=>x=1 và y=-2
Vậy: \(C_{min}=3\) khi (x,y)=(1;-2)
Bài 2:
a: \(A=5-8x-x^2\)
\(=-\left(x^2+8x\right)+5\)
\(=-\left(x^2+8x+16-16\right)+5\)
\(=-\left(x+4\right)^2+16+5=-\left(x+4\right)^2+21< =21\forall x\)
Dấu '=' xảy ra khi x+4=0
=>x=-4
b: \(B=x-x^2\)
\(=-\left(x^2-x\right)\)
\(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)
=>\(x=\dfrac{1}{2}\)
c: \(C=4x-x^2+3\)
\(=-x^2+4x-4+7\)
\(=-\left(x^2-4x+4\right)+7\)
\(=-\left(x-2\right)^2+7< =7\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
d: \(D=-x^2+6x-11\)
\(=-\left(x^2-6x+11\right)\)
\(=-\left(x^2-6x+9+2\right)\)
\(=-\left(x-3\right)^2-2< =-2\forall x\)
Dấu '=' xảy ra khi x-3=0
=>x=3
a: Ta có: \(4\left(2-x\right)+x\left(x+6\right)=x^2\)
\(\Leftrightarrow8-4x+x^2+6x-x^2=0\)
\(\Leftrightarrow2x=-8\)
hay x=-4
b: Ta có: \(x\left(x-7\right)-\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow x^2-7x-x^2-3x+10=0\)
\(\Leftrightarrow-10x=-10\)
hay x=1
c: Ta có: \(\left(2x+3\right)\left(3-2x\right)+\left(2x-1\right)^2=2\)
\(\Leftrightarrow9-4x^2+4x^2-4x+1=2\)
\(\Leftrightarrow-4x=-8\)
hay x=2
Ta có: f(x) + g(x) – h(x)
= (x5 – 4x3 + x2 – 2x + 1) + (x5 – 2x4 + x2 – 5x + 3) – (x4 – 3x2 + 2x – 5)
= x5 – 4x3 + x2 – 2x + 1 + x5 – 2x4 + x2 – 5x + 3 – x4 + 3x2 - 2x + 5
= (x5 +x5) – (2x4 + x4) – 4x3 + (x2 + x2 + 3x2)- (2x + 5x + 2x) + (1 + 3 + 5)
= (1 + 1)x5 – (2 + 1)x4 – 4x3 + (1 + 1 + 3)x2 - (2 + 5 + 2)x + (1 + 3 + 5)
= 2x5 – 3x4 – 4x3 + 5x2 – 9x + 9
a)x3-x2=0
⇔x2(x-1)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b)3x2-5x=0
⇔ x(3x-5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{3}\end{matrix}\right.\)
c)x3=x5
⇔ x3(1-x2)=0
⇔ x3(1-x)(1+x)=0
⇔\(\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
d)(2x+7)2-4(2x+7)=0
⇔ (2x+7)(2x+3)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-7}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)
a) Ta có: \(x^3-x^2=0\)
\(\Leftrightarrow x^2\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b) Ta có: \(3x^2-5x=0\)
\(\Leftrightarrow x\left(3x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{3}\end{matrix}\right.\)
c) Ta có: \(x^3=x^5\)
\(\Leftrightarrow x^5-x^3=0\)
\(\Leftrightarrow x^3\left(x^2-1\right)=0\)
\(\Leftrightarrow x^3\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
d) Ta có: \(\left(2x+7\right)^2-4\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x+7\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-7}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)
cho M(x) =0
\(=>x^3-25x=0=>x\left(x^2-25\right)=0\)
\(=>\left[{}\begin{matrix}x=0\\x^2-25=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x^2=25=>\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\end{matrix}\right.\)
a,X^2006-X^2=0
X^2(X^2014-1)=0
X^2=0;x^2014=1
X=-1;0;1
b,2^x+2-2^x=96
2^x.4-2^x=96
2^x(4-1)=96
2^x=96:3
2^x=32
2^x=2^5
x=5
c,x.(x^2)^3=x^5
x.x^6=x^5
x^7-x-5=0
...
x=-1;0;1
k cho mk nha bn