K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

+) ta có : \(A=tan5.tan10...tan85\)

\(=\left(tan5.tan85\right).\left(tan10.tan80\right)...\left(tan40.tan50\right).tan45\)

\(=\left(tan5.tan\left(90-5\right)\right).\left(tan10.tan\left(90-10\right)\right)...\left(tan40.tan\left(90-40\right)\right).tan45\)

\(=\left(tan5.cot5\right).\left(tan10.cot10\right)...\left(tan40.cot40\right).tan45\)

\(=tan45=1\)

+) ta có : \(B=cot3.cot6...cot87\)

\(=\left(cot3.cot87\right).\left(cot6.cot84\right)...\left(cot42.cot48\right).cot45\)

\(=\left(cot3.cot\left(90-3\right)\right).\left(cot6.cot\left(90-6\right)\right)...\left(cot42.cot\left(90-42\right)\right).cot45\)

\(=\left(cot3.tan3\right).\left(cot6.tan6\right)...\left(cot42.tan42\right).cot45\)

\(=cot45=1\)

AH
Akai Haruma
Giáo viên
26 tháng 7 2021

Lời giải:
a.

$\tan a+\cot a=2\Leftrightarrow \tan a+\frac{1}{\tan a}=2$

$\Leftrightarrow \frac{\tan ^2a+1}{\tan a}=2$

$\Leftrightarrow \tan ^2a-2\tan a+1=0$

$\Leftrightarrow (\tan a-1)^2=0\Rightarrow \tan a=1$

$\cot a=\frac{1}{\tan a}=1$

$1=\tan a=\frac{\cos a}{\sin a}\Rightarrow \cos a=\sin a$

Mà $\cos ^2a+\sin ^2a=1$

$\Rightarrow \cos a=\sin a=\pm \frac{1}{\sqrt{2}}$

b.

Vì $\sin a=\cos a=\pm \frac{1}{\sqrt{2}}$

$\Rightarrow \sin a\cos a=\frac{1}{2}$

$E=\frac{\sin a.\cos a}{\tan ^2a+\cot ^2a}=\frac{\frac{1}{2}}{1+1}=\frac{1}{4}$

NV
31 tháng 12 2021

Đề bài tào lao thật sự

Vừa độ vừa radian trong 1 phương trình là không chính xác. Đã độ thì độ hết, đã radian thì radian hết

a: sin a=2/3

=>cos^2a=1-(2/3)^2=5/9

=>\(cosa=\dfrac{\sqrt{5}}{3}\)

\(tana=\dfrac{2}{3}:\dfrac{\sqrt{5}}{3}=\dfrac{2}{\sqrt{5}}\)

\(cota=1:\dfrac{2}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)

b: cos a=1/5

=>sin^2a=1-(1/5)^2=24/25

=>\(sina=\dfrac{2\sqrt{6}}{5}\)

\(tana=\dfrac{2\sqrt{6}}{5}:\dfrac{1}{5}=2\sqrt{6}\)

\(cota=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{12}\)

c: cot a=1/tana=1/2

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>1/cos^2a=1+4=5

=>cos^2a=1/5

=>cosa=1/căn 5

\(sina=\sqrt{1-cos^2a}=\dfrac{2}{\sqrt{5}}\)

NV
4 tháng 3 2021

\(tana-cota=2\sqrt{3}\Rightarrow\left(tana-cota\right)^2=12\)

\(\Rightarrow\left(tana+cota\right)^2-4=12\Rightarrow\left(tana+cota\right)^2=16\)

\(\Rightarrow P=4\)

\(sinx+cosx=\dfrac{1}{5}\Rightarrow\left(sinx+cosx\right)^2=\dfrac{1}{25}\)

\(\Rightarrow1+2sinx.cosx=\dfrac{1}{25}\Rightarrow sinx.cosx=-\dfrac{12}{25}\)

\(P=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}=\dfrac{sin^2x+cos^2x}{sinx.cosx}=\dfrac{1}{sinx.cosx}=\dfrac{1}{-\dfrac{12}{25}}=-\dfrac{25}{12}\)

-4 ở đâu ra vậy ạ

 

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

\(A = \sin {150^o} + \tan {135^o} + \cot {45^o}\)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

\(\sin {150^o} = \frac{1}{2};\tan {135^o} =  - 1;\cot {45^o} = 1.\)

\( \Rightarrow A = \frac{1}{2} - 1 + 1 = \frac{1}{2}.\)

\(B = 2\cos {30^o} - 3\tan 150 + \cot {135^o}\)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

\(\cos {30^o} = \frac{{\sqrt 3 }}{2};\tan {150^o} =  - \frac{{\sqrt 3 }}{3};\cot {135^o} =  - 1.\)

\( \Rightarrow B = 2.\frac{{\sqrt 3 }}{2} - 3.\left( { - \frac{{\sqrt 3 }}{3}} \right) + 1 = 2\sqrt 3  + 1.\)

5 tháng 2 2021

Ta có : \(tanx+cotx=m\)

\(\Rightarrow tan^2x+2tanx.cotx+cot^2x=m^2\)

\(\Rightarrow tan^2x+cot^2x=m^2-2tanx.cotx=m^2-2.1=m^2-2\)

Ta lại có : \(A=\left(tanx+cotx\right)\left(tan^2x-tanx.cotx+cot^2x\right)\)

\(=m\left(m^2-2-1\right)=m\left(m^2-3\right)=m^3-3m\)

Vậy ...

3 tháng 6 2018

a, Ta có: cot 24 0 = tan 66 0 ; cot 57 0 = tan 33 0 ; cot 30 0 = tan 60 0

=> tan 16 0 < tan 33 0 < tan 60 0 < tan 66 0 < tan 80 0

=> tan 16 0 < cot 57 0 < cot 30 0 < cot 24 0 < tan 80 0

b, Ta có:  cos 2 α = 1 - sin 2 α =>  cosα =  2 6 5 , tanα =  sin α cos α = 6 12 và cotα =  cos α sin α = 2 6

22 tháng 10 2023

\(0< a< 90^0\)

=>\(sina>0\)

\(sin^2a+cos^2a=1\)

=>\(sin^2a=1-\dfrac{9}{16}=\dfrac{7}{16}\)

=>\(sina=\dfrac{\sqrt{7}}{4}\)

\(tana=\dfrac{sina}{cosa}=\dfrac{\sqrt{7}}{4}:\dfrac{3}{4}=\dfrac{\sqrt{7}}{3}\)

\(cota=\dfrac{1}{tana}=\dfrac{3}{\sqrt{7}}\)

\(A=\dfrac{tana+3cota}{tana+cota}=\dfrac{\dfrac{\sqrt{7}}{3}+\dfrac{9}{\sqrt{7}}}{\dfrac{3}{\sqrt{7}}+\dfrac{\sqrt{7}}{3}}\)

\(=\dfrac{34}{3\sqrt{7}}:\dfrac{16}{3\sqrt{7}}=\dfrac{17}{8}\)

3 tháng 7 2023

Cách 1: \(\tan^2\alpha+\cot^2\alpha=\left(\tan\alpha+\cot\alpha\right)^2-2\tan\alpha\cot\alpha\) \(=2^2-2=2\) 

 \(\tan^3\alpha+\cot^3\alpha=\left(\tan\alpha+\cot\alpha\right)^3-3\tan\alpha\cot\alpha\left(\tan\alpha+\cot\alpha\right)\) \(=2^3-3.1.2=2\)

Cách 2: Ta thấy \(\cot\alpha=\dfrac{1}{\tan\alpha}\) nên ta có \(\tan\alpha+\dfrac{1}{\tan\alpha}=2\) (*). Áp dụng BDT AM-GM, ta có \(\tan\alpha+\dfrac{1}{\tan\alpha}\ge2\sqrt{\tan\alpha.\dfrac{1}{\tan\alpha}}=2\), do đó (*) xảy ra khi và chỉ khi \(\tan\alpha=\dfrac{1}{\tan\alpha}\Leftrightarrow\tan^2\alpha=1\Leftrightarrow\tan\alpha=1\) \(\Rightarrow\cot\alpha=1\). Từ đó dễ dàng tính được \(\tan^2\alpha+\cot^2\alpha=\tan^3\alpha+\cot^3\alpha=2\)

(Tuyệt đối không được dùng cách 2 khi \(\tan\alpha\) hoặc \(\cot\alpha\) âm nhé, vì bất đẳng thức AM-GM chỉ dùng cho số dương thôi.)

30 tháng 6 2023

Chỗ này phải sửa thành 2 mới đúng nhé.