Tính
A=tan 5o .tan 10o. ... .tan 85o
B=cot 3o. cot 6o. ... . cot 87o
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
$\tan a+\cot a=2\Leftrightarrow \tan a+\frac{1}{\tan a}=2$
$\Leftrightarrow \frac{\tan ^2a+1}{\tan a}=2$
$\Leftrightarrow \tan ^2a-2\tan a+1=0$
$\Leftrightarrow (\tan a-1)^2=0\Rightarrow \tan a=1$
$\cot a=\frac{1}{\tan a}=1$
$1=\tan a=\frac{\cos a}{\sin a}\Rightarrow \cos a=\sin a$
Mà $\cos ^2a+\sin ^2a=1$
$\Rightarrow \cos a=\sin a=\pm \frac{1}{\sqrt{2}}$
b.
Vì $\sin a=\cos a=\pm \frac{1}{\sqrt{2}}$
$\Rightarrow \sin a\cos a=\frac{1}{2}$
$E=\frac{\sin a.\cos a}{\tan ^2a+\cot ^2a}=\frac{\frac{1}{2}}{1+1}=\frac{1}{4}$
Đề bài tào lao thật sự
Vừa độ vừa radian trong 1 phương trình là không chính xác. Đã độ thì độ hết, đã radian thì radian hết
a: sin a=2/3
=>cos^2a=1-(2/3)^2=5/9
=>\(cosa=\dfrac{\sqrt{5}}{3}\)
\(tana=\dfrac{2}{3}:\dfrac{\sqrt{5}}{3}=\dfrac{2}{\sqrt{5}}\)
\(cota=1:\dfrac{2}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)
b: cos a=1/5
=>sin^2a=1-(1/5)^2=24/25
=>\(sina=\dfrac{2\sqrt{6}}{5}\)
\(tana=\dfrac{2\sqrt{6}}{5}:\dfrac{1}{5}=2\sqrt{6}\)
\(cota=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{12}\)
c: cot a=1/tana=1/2
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>1/cos^2a=1+4=5
=>cos^2a=1/5
=>cosa=1/căn 5
\(sina=\sqrt{1-cos^2a}=\dfrac{2}{\sqrt{5}}\)
\(tana-cota=2\sqrt{3}\Rightarrow\left(tana-cota\right)^2=12\)
\(\Rightarrow\left(tana+cota\right)^2-4=12\Rightarrow\left(tana+cota\right)^2=16\)
\(\Rightarrow P=4\)
\(sinx+cosx=\dfrac{1}{5}\Rightarrow\left(sinx+cosx\right)^2=\dfrac{1}{25}\)
\(\Rightarrow1+2sinx.cosx=\dfrac{1}{25}\Rightarrow sinx.cosx=-\dfrac{12}{25}\)
\(P=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}=\dfrac{sin^2x+cos^2x}{sinx.cosx}=\dfrac{1}{sinx.cosx}=\dfrac{1}{-\dfrac{12}{25}}=-\dfrac{25}{12}\)
\(A = \sin {150^o} + \tan {135^o} + \cot {45^o}\)
Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\(\sin {150^o} = \frac{1}{2};\tan {135^o} = - 1;\cot {45^o} = 1.\)
\( \Rightarrow A = \frac{1}{2} - 1 + 1 = \frac{1}{2}.\)
\(B = 2\cos {30^o} - 3\tan 150 + \cot {135^o}\)
Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\(\cos {30^o} = \frac{{\sqrt 3 }}{2};\tan {150^o} = - \frac{{\sqrt 3 }}{3};\cot {135^o} = - 1.\)
\( \Rightarrow B = 2.\frac{{\sqrt 3 }}{2} - 3.\left( { - \frac{{\sqrt 3 }}{3}} \right) + 1 = 2\sqrt 3 + 1.\)
Ta có : \(tanx+cotx=m\)
\(\Rightarrow tan^2x+2tanx.cotx+cot^2x=m^2\)
\(\Rightarrow tan^2x+cot^2x=m^2-2tanx.cotx=m^2-2.1=m^2-2\)
Ta lại có : \(A=\left(tanx+cotx\right)\left(tan^2x-tanx.cotx+cot^2x\right)\)
\(=m\left(m^2-2-1\right)=m\left(m^2-3\right)=m^3-3m\)
Vậy ...
a, Ta có: cot 24 0 = tan 66 0 ; cot 57 0 = tan 33 0 ; cot 30 0 = tan 60 0
=> tan 16 0 < tan 33 0 < tan 60 0 < tan 66 0 < tan 80 0
=> tan 16 0 < cot 57 0 < cot 30 0 < cot 24 0 < tan 80 0
b, Ta có: cos 2 α = 1 - sin 2 α => cosα = 2 6 5 , tanα = sin α cos α = 6 12 và cotα = cos α sin α = 2 6
\(0< a< 90^0\)
=>\(sina>0\)
\(sin^2a+cos^2a=1\)
=>\(sin^2a=1-\dfrac{9}{16}=\dfrac{7}{16}\)
=>\(sina=\dfrac{\sqrt{7}}{4}\)
\(tana=\dfrac{sina}{cosa}=\dfrac{\sqrt{7}}{4}:\dfrac{3}{4}=\dfrac{\sqrt{7}}{3}\)
\(cota=\dfrac{1}{tana}=\dfrac{3}{\sqrt{7}}\)
\(A=\dfrac{tana+3cota}{tana+cota}=\dfrac{\dfrac{\sqrt{7}}{3}+\dfrac{9}{\sqrt{7}}}{\dfrac{3}{\sqrt{7}}+\dfrac{\sqrt{7}}{3}}\)
\(=\dfrac{34}{3\sqrt{7}}:\dfrac{16}{3\sqrt{7}}=\dfrac{17}{8}\)
Cách 1: \(\tan^2\alpha+\cot^2\alpha=\left(\tan\alpha+\cot\alpha\right)^2-2\tan\alpha\cot\alpha\) \(=2^2-2=2\)
\(\tan^3\alpha+\cot^3\alpha=\left(\tan\alpha+\cot\alpha\right)^3-3\tan\alpha\cot\alpha\left(\tan\alpha+\cot\alpha\right)\) \(=2^3-3.1.2=2\)
Cách 2: Ta thấy \(\cot\alpha=\dfrac{1}{\tan\alpha}\) nên ta có \(\tan\alpha+\dfrac{1}{\tan\alpha}=2\) (*). Áp dụng BDT AM-GM, ta có \(\tan\alpha+\dfrac{1}{\tan\alpha}\ge2\sqrt{\tan\alpha.\dfrac{1}{\tan\alpha}}=2\), do đó (*) xảy ra khi và chỉ khi \(\tan\alpha=\dfrac{1}{\tan\alpha}\Leftrightarrow\tan^2\alpha=1\Leftrightarrow\tan\alpha=1\) \(\Rightarrow\cot\alpha=1\). Từ đó dễ dàng tính được \(\tan^2\alpha+\cot^2\alpha=\tan^3\alpha+\cot^3\alpha=2\).
(Tuyệt đối không được dùng cách 2 khi \(\tan\alpha\) hoặc \(\cot\alpha\) âm nhé, vì bất đẳng thức AM-GM chỉ dùng cho số dương thôi.)
+) ta có : \(A=tan5.tan10...tan85\)
\(=\left(tan5.tan85\right).\left(tan10.tan80\right)...\left(tan40.tan50\right).tan45\)
\(=\left(tan5.tan\left(90-5\right)\right).\left(tan10.tan\left(90-10\right)\right)...\left(tan40.tan\left(90-40\right)\right).tan45\)
\(=\left(tan5.cot5\right).\left(tan10.cot10\right)...\left(tan40.cot40\right).tan45\)\(=tan45=1\)
+) ta có : \(B=cot3.cot6...cot87\)
\(=\left(cot3.cot87\right).\left(cot6.cot84\right)...\left(cot42.cot48\right).cot45\)
\(=\left(cot3.cot\left(90-3\right)\right).\left(cot6.cot\left(90-6\right)\right)...\left(cot42.cot\left(90-42\right)\right).cot45\)\(=cot45=1\)