Bài 1 chứng minh rằng : \(x^2+x+1\)< o là vô nghiệm
chứng minh rằng ; \(2x^2-12x+19\)>0 có tập nghiệm làR
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta chọn $x=3k;y=4k;z=5k$ với $k$ là số nguyên dương.
Khi này $x^2+y^2=25k^2 =z^2$. Tức có vô hạn nghiệm $(x;y;z)=(3k;4k;5k)$ với $k$ là số nguyên dương thỏa mãn
ta có A=x(x+1)+(x+1)=(x+1)2+1 vì(x+1)2 >hoac =0 nen (x+1)2+1>0
hay A=(x+1)2+1>0
suy ra đa thức A vô nghiệm
-x^2 và x không thể là 2 số đối nhau(chẳng hạn -5^2 và 5) vậy lời giải của bạn sai
Bài làm:
Ta có: \(x^2-x+1=0\)
\(\Leftrightarrow\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)(vô lý)
=> không tồn tại x thỏa mãn
=> Đa thức vô nghiệm
a: 6x^2-7x-3=0
=>6x^2-9x+2x-3=0
=>(2x-3)(3x+1)=0
=>x=-1/3 hoặc x=3/2
=>ĐPCM
b: 2x^2-5x-3=0
=>2x^2-6x+x-3=0
=>(x-3)(2x+1)=0
=>x=-1/2 hoặc x=3
=>ĐPCM
deo biet
ma may hoc lop 9 roi thi co day roi chu s ngu vai lon ra
bài này tôi dùng cách viết thành bình phương như sau:
Phương trình tương đương:
\(4x+2-2\left(x+2\right)\sqrt{x+1}=0\)
\(\Leftrightarrow x^2+4x+4-2\left(x+2\right)\sqrt{x+1}+x+1-x^2-x-3=0\)
\(\Leftrightarrow\left(\left(x+2\right)-\left(x+1\right)\right)^2=x^2+x+3\)
\(\Leftrightarrow x^2+x+3=1\)
\(\Leftrightarrow x^2+x+2=0\)
Đến đây thì đã quá đơn giản, có lẽ bạn sẽ giải được.
Ta thấy \(x^2+x+2=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)
Vậy nên phương trình vô nghiệm (ĐPCM)
Bài 1 : Ta có : \(x^2+x+1=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
Mâu thuẫn với đẳng thức ban đầu . Nên đẳng thức đó vô nghiệm với mọi x
Bài 2 : Ta có : \(2x^2-12x+19=\left(2x^2-12x+18\right)+1=2\left(x^2-6x+9\right)+1=2\left(x-3\right)^2+1>0\)
Giống với đẳng thức đề đã cho . Vậy đẳng thức có tập nghiệm là \(x\in R\)