K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x2-x-4x+4=0

x(x-1)-4(x-1)=0

(x-1)(x-4)=0

\(\orbr{\begin{cases}x-1=0\\x-4=0\end{cases}}\)

\(\orbr{\begin{cases}x=1\\x=4\end{cases}}\)

14 tháng 8 2018

x2 - 5x + 4 = 0

=> x2 - x - 4x + 4 = 0

=> (x2 - x) - (4x - 4) = 0

=> x(x - 1) - 4(x - 1) = 0

=> (x - 4)(x - 1) = 0

=> x - 4 = 0 hoặc x - 1 = 0

=> x = 4 hoặc x = 1

vậy_

11 tháng 4 2021

`(x-1)/3+(3x-5)/2+(2x)/9+(-5x)/9`

`=(x-1)/3+(3x-5)/2+x/3`

`=(2x-2+9x-15+2x)/6`

`=(13x-17)/6`

11 tháng 4 2021

cảm ơn bạn nhiều^^

haha

30 tháng 7 2021

Câu 2,3,4 nx thôi ạ. Câu 1 có bạn giúp r ạ 

30 tháng 7 2021

1)\(\sqrt{4x^2+12x+9}=2-x\)

\(\Leftrightarrow\sqrt{\left(2x+3\right)^2}=2-x\)

\(\Leftrightarrow\left|2x+3\right|=2-x\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=2-x\\2x+3=x-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-5\end{matrix}\right.\)

\(\)

14 tháng 7 2016

5x2 - 4(x2 - 2x + 1) - 5 = 0

=> 5x2 - 4x2 + 8x - 4 - 5 = 0 

=> x2 + 8x - 9 = 0

=> x2 + 9x - x - 9 = 0 

=> x(x + 9) - (x + 9) = 0

=> (x + 9)(x - 1) = 0

=> x + 9 = 0 => x = -9

hoặc x - 1 = 0 = > x = 1

                                                                       Vậy x = -9, x = 1

14 tháng 7 2016

\(5x^2-4\left(x^2-2x+1\right)-5=0\)

\(\left(5x^2-5\right)-4\left(x^2-2.1.x+1^2\right)=0\)

\(5\left(x^2-1\right)-4\left(x-1\right)^2=0\)

\(5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)\left(x-1\right)=0\)

\(\left[5\left(x+1\right)-4\left(x-1\right)\right]\left(x-1\right)=0\)

\(\left(5x+5-4x+4\right)\left(x-1\right)=0\)

\(\left(x+9\right)\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+9=0\\x-1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-9\\x=1\end{cases}}\)

Vậy \(\orbr{\begin{cases}x=-9\\x=1\end{cases}}.\)

24 tháng 5 2018

=> \(x^4+x^4-\left(x^5+x^2\right)-2x=1\)

=> \(x^5-x^5-x^2-2x=1\)

=> \(0-x.\left(x+2\right)=1\)

=> \(x.\left(x+2\right)=-1\)

Ta có bảng:

\(x\)\(1\)\(-1\)
\(x+2\)\(-1\)\(1\)

=>

\(x\)\(1\)\(-1\)
\(x\)\(-3\)\(-1\)

Vậy x = 1;-1;-3

24 tháng 5 2018

\(x^4+3x^3-x^2-x^3-3x^2+x-x^2-3x+1.\)

\(\left(x^4-x^3-x^2\right)+3\left(x^3-x^2-x\right)-\left(x^2-x-1\right)=0\)

\(x^2\left(x^2-x-1\right)+3x\left(x^2-x-1\right)-\left(x^2-x-1\right)=0\)

\(\left(x^2-x-1\right)\left(x^2+3x-1\right)=0\)

đến đây dùng denta

\(x^2-x-1=0\Leftrightarrow\Delta=b^2-4ac=1+4=5>0\)

vậy pt có 2 nghiệm phân biệt 

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{1+\sqrt{5}}{2}\)  " 1)

\(x_2=\frac{1-\sqrt{5}}{2}\)                  (2)

\(x^2+3x-1=0\)

áp dụng denta ta có \(\Delta=b^2-4ac=9+4=13>0\)

vậy pt có 2 nghiệm phân biệt

\(x_3=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-3+\sqrt{13}}{2}\)      (3)

\(x_4=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-3-\sqrt{13}}{2}\)       (4)

gom hết lại rồi kl nghiệm của pt là ....................

21 tháng 10 2021

\(x^7+x^6+x^4+x^3+x^2+1\)

\(=x^4\left(x^3+x^2+1\right)+\left(x^3+x^2+1\right)\)

\(=\left(x^3+x^2+1\right)\left(x^4+1\right)\)

25 tháng 9 2019

b, \(\left(5x+1\right)^2=\frac{36}{49}\)

\(\Rightarrow\left(5x+1\right)^2=\left(\frac{6}{7}\right)^2\)

\(\Rightarrow5x+1=\frac{6}{7}\)

\(\Rightarrow5x=\frac{-1}{7}\)

\(\Rightarrow x=\frac{-1}{35}\)

14 tháng 8 2015

\(\frac{5x+7}{4}+\frac{3x+5}{8}>\frac{9x+4}{5}\)

\(\frac{10\cdot\left(5x+7\right)}{40}+\frac{5\cdot\left(3x+5\right)}{40}>\frac{8\cdot\left(9x+4\right)}{40}\)

10.(5x + 7) + 5.(3x + 5) > 8.(9x + 4)

10.(5x + 7) + 5.(3x + 5) - 8.(9x + 4) > 0

50x + 70 + 15x + 25 - 72x - 32 > 0

- 7x + 63 > 0

- 7.(x - 9) > 0

\(\Rightarrow x-9