bạn nào biết giúp mình với
x^2 - 5x + 4 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`(x-1)/3+(3x-5)/2+(2x)/9+(-5x)/9`
`=(x-1)/3+(3x-5)/2+x/3`
`=(2x-2+9x-15+2x)/6`
`=(13x-17)/6`
1)\(\sqrt{4x^2+12x+9}=2-x\)
\(\Leftrightarrow\sqrt{\left(2x+3\right)^2}=2-x\)
\(\Leftrightarrow\left|2x+3\right|=2-x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=2-x\\2x+3=x-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-5\end{matrix}\right.\)
\(\)
5x2 - 4(x2 - 2x + 1) - 5 = 0
=> 5x2 - 4x2 + 8x - 4 - 5 = 0
=> x2 + 8x - 9 = 0
=> x2 + 9x - x - 9 = 0
=> x(x + 9) - (x + 9) = 0
=> (x + 9)(x - 1) = 0
=> x + 9 = 0 => x = -9
hoặc x - 1 = 0 = > x = 1
Vậy x = -9, x = 1
\(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\left(5x^2-5\right)-4\left(x^2-2.1.x+1^2\right)=0\)
\(5\left(x^2-1\right)-4\left(x-1\right)^2=0\)
\(5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)\left(x-1\right)=0\)
\(\left[5\left(x+1\right)-4\left(x-1\right)\right]\left(x-1\right)=0\)
\(\left(5x+5-4x+4\right)\left(x-1\right)=0\)
\(\left(x+9\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+9=0\\x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-9\\x=1\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=-9\\x=1\end{cases}}.\)
=> \(x^4+x^4-\left(x^5+x^2\right)-2x=1\)
=> \(x^5-x^5-x^2-2x=1\)
=> \(0-x.\left(x+2\right)=1\)
=> \(x.\left(x+2\right)=-1\)
Ta có bảng:
\(x\) | \(1\) | \(-1\) |
\(x+2\) | \(-1\) | \(1\) |
=>
\(x\) | \(1\) | \(-1\) |
\(x\) | \(-3\) | \(-1\) |
Vậy x = 1;-1;-3
\(x^4+3x^3-x^2-x^3-3x^2+x-x^2-3x+1.\)
\(\left(x^4-x^3-x^2\right)+3\left(x^3-x^2-x\right)-\left(x^2-x-1\right)=0\)
\(x^2\left(x^2-x-1\right)+3x\left(x^2-x-1\right)-\left(x^2-x-1\right)=0\)
\(\left(x^2-x-1\right)\left(x^2+3x-1\right)=0\)
đến đây dùng denta
\(x^2-x-1=0\Leftrightarrow\Delta=b^2-4ac=1+4=5>0\)
vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{1+\sqrt{5}}{2}\) " 1)
\(x_2=\frac{1-\sqrt{5}}{2}\) (2)
\(x^2+3x-1=0\)
áp dụng denta ta có \(\Delta=b^2-4ac=9+4=13>0\)
vậy pt có 2 nghiệm phân biệt
\(x_3=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-3+\sqrt{13}}{2}\) (3)
\(x_4=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-3-\sqrt{13}}{2}\) (4)
gom hết lại rồi kl nghiệm của pt là ....................
\(x^7+x^6+x^4+x^3+x^2+1\)
\(=x^4\left(x^3+x^2+1\right)+\left(x^3+x^2+1\right)\)
\(=\left(x^3+x^2+1\right)\left(x^4+1\right)\)
b, \(\left(5x+1\right)^2=\frac{36}{49}\)
\(\Rightarrow\left(5x+1\right)^2=\left(\frac{6}{7}\right)^2\)
\(\Rightarrow5x+1=\frac{6}{7}\)
\(\Rightarrow5x=\frac{-1}{7}\)
\(\Rightarrow x=\frac{-1}{35}\)
\(\frac{5x+7}{4}+\frac{3x+5}{8}>\frac{9x+4}{5}\)
\(\frac{10\cdot\left(5x+7\right)}{40}+\frac{5\cdot\left(3x+5\right)}{40}>\frac{8\cdot\left(9x+4\right)}{40}\)
10.(5x + 7) + 5.(3x + 5) > 8.(9x + 4)
10.(5x + 7) + 5.(3x + 5) - 8.(9x + 4) > 0
50x + 70 + 15x + 25 - 72x - 32 > 0
- 7x + 63 > 0
- 7.(x - 9) > 0
\(\Rightarrow x-9
x2-x-4x+4=0
x(x-1)-4(x-1)=0
(x-1)(x-4)=0
\(\orbr{\begin{cases}x-1=0\\x-4=0\end{cases}}\)
\(\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
x2 - 5x + 4 = 0
=> x2 - x - 4x + 4 = 0
=> (x2 - x) - (4x - 4) = 0
=> x(x - 1) - 4(x - 1) = 0
=> (x - 4)(x - 1) = 0
=> x - 4 = 0 hoặc x - 1 = 0
=> x = 4 hoặc x = 1
vậy_