C = \(x^7+y^7\) với \(x=\frac{-1+\sqrt{2}}{2}\) , \(y=\frac{-1-\sqrt{2}}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình đề câu a phải như vậy nè:
\(a,\hept{\begin{cases}\frac{1}{x-2}+\frac{1}{y-1}=1\\\frac{2}{x-2}-\frac{3}{y-1}=1\end{cases}}\)\(Đkxđ:\hept{\begin{cases}x\ne2\\y\ne1\end{cases}}\)
Đặt: \(X=\frac{1}{x-2};Y=\frac{1}{y-1}\)
Ta có hệ sau:
\(\hept{\begin{cases}X+Y=1\\2X-3Y=1\end{cases}\Leftrightarrow\hept{\begin{cases}X=1-Y\\2\left(1-Y\right)-3Y=1\end{cases}}}\Leftrightarrow\hept{\begin{cases}X=1-Y\\2-5Y=1\end{cases}\Leftrightarrow\hept{\begin{cases}X=\frac{4}{5}\\Y=\frac{1}{5}\end{cases}}}\)
Với \(X=\frac{4}{5}\Rightarrow\frac{1}{x-2}=\frac{4}{5}\Leftrightarrow4\left(x-2\right)=5\Leftrightarrow x=\frac{13}{4}\)
Với \(Y=\frac{1}{5}\Rightarrow\frac{1}{y-1}=\frac{1}{5}\Leftrightarrow y-1=5\Leftrightarrow y=6\)
Vậy nghiệm của hệ pt là: \(\left(x;y\right)=\left(\frac{13}{4};6\right)\)
Câu b e nghĩ đề như vậy nè:
\(b,\hept{\begin{cases}\frac{7}{\sqrt{x-7}}-\frac{4}{\sqrt{y+6}}=\frac{5}{3}\\\frac{5}{\sqrt{x-7}}+\frac{3}{\sqrt{y+6}}=\frac{3}{6}\end{cases}}\) \(Đkxđ:\hept{\begin{cases}x>7\\x>-6\end{cases}}\)
Đặt \(\frac{1}{\sqrt{x-7}}=a\left(a>0\right);\frac{1}{\sqrt{y+6}}=b\left(b>0\right)\)
Ta có hệ pt mới: \(\hept{\begin{cases}7a-4b=\frac{5}{3}\\5a+3b=\frac{13}{6}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{1}{3}\\b=\frac{1}{6}\end{cases}}\left(tmđk\right)\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{\sqrt{x-7}}=\frac{1}{3}\\\frac{1}{\sqrt{y+6}}=\frac{1}{6}\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x-7}=3\\\sqrt{y+6}=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x-7=9\\x+6=36\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16\\y=30\end{cases}\left(tmđk\right)}\)
Vậy hệ pt có nghiệm \(\left(x,y\right)=\left(16;30\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a). \(\frac{1}{\sqrt{5-\sqrt{7}}}+\frac{\sqrt{5}}{\sqrt{5+\sqrt{7}}})-1\)
\(\Leftrightarrow\frac{1}{\sqrt{25-\sqrt{49}}}-1\)
\(\Leftrightarrow\frac{1}{\sqrt{25-7}}-1\)
\(\Leftrightarrow\frac{1}{\sqrt{18}}-1\)
\(\Leftrightarrow\frac{1}{3\sqrt{2}}-1\)
ĐẾN ĐÂY BN QUY ĐỒNG LÀ ĐC
![](https://rs.olm.vn/images/avt/0.png?1311)
f)\(\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}:\frac{1}{\sqrt{x}-\sqrt{y}}\)
\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}.\left(\sqrt{x}-\sqrt{y}\right)\)
\(=x-y\)
![](https://rs.olm.vn/images/avt/0.png?1311)
3)\(...=\left[\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}\right].\frac{1-xy}{x+xy}\)
= \(\frac{\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}+\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}}{1-xy}.\frac{1-xy}{x\left(1+y\right)}\)= \(\frac{2\sqrt{x}+2y\sqrt{x}}{x\left(1+y\right)}=\frac{2\sqrt{x}\left(1+y\right)}{x\left(1+y\right)}=\frac{2}{\sqrt{x}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(\frac{3+\sqrt{3}}{1+\sqrt{3}}\)=\(\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{1+\sqrt{3}}\)=\(\sqrt{3}\)
b)\(\frac{2\sqrt{3}-6}{\sqrt{8}-\sqrt{2}}\)
\(\frac{y-2\sqrt{y}}{\sqrt{y}-2}\)=\(\frac{\sqrt{y}\left(\sqrt{y}-2\right)}{\sqrt{y}-2}\)=\(\sqrt{y}\)
d) \(\frac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)=\(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x+3}\right)}{\sqrt{x}-1}\)=\(\sqrt{x}\)+3
e)\(\frac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)=\(\frac{\left(\sqrt{y}-1\right)\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}\)=\(\sqrt{y}\)-1
g)\(\frac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)=\(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}\)=\(\frac{\sqrt{x}+1}{\sqrt{x+3}}\)
chúc bạn học tốt