\(C=2^1+2^2+2^3+2^4+...+\)\(2^{100}\)CTR C là bội của 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.4=12
33.34=1122
333.334=111222
=> 1111....1 ( 100 c/s )22222......2 (100c/s ) =33...333(100 cs 3)x33....334 (99 cs 3; 1 cs 4
Mà đây là 2 stn liên tiếp
a)
Đặt 1 -3 + 5 - 7 + ..... + 2001 - 2003 + 2005
= (1 - 3) + (5 - 7) + ... + (2001 - 2003) + 2005
= -2 x 501 + 2005
= -1002 + 2005
= 1003
b)
1-2-3+4+5-6-7+8+.......+1993-1994
=(1-2-3+4)+(5-6-7+8)+........+(1990-1991-1992+1993)-1994
=0+0+........+0-1994
=0-1994
=-1994
c)
1^2 - 2^2 +3^2 -4^2 +...........+99^2-100^2+101^2
= (1-2)(1+2) + (3-4)(3+4) + (5-6)(5+6) + ....+ (99-100)(99+100) +101^2
= -3 - 7 - 11 - ....-199 + 101^2
= 101^2 - (3 + 7 + 11 + ... + 199)
[ Ta dễ thấy (3 + 7 + 11 + ... + 199) là một cấp số cộng có d=4 và n=50]
= 101^2 - [(199 + 3).50]/2
= 5151 k nha
1 - 3 + 5 - 7 + ......+ 2001 - 2003 + 2005
Dãy trên có số số hạng là :
\(( 2005 - 1 ) : 2 + 1 = 1003\) ( số hạng )
Ta ghép mỗi bộ 2 số vậy có 501 bộ và dư 1 số.
Ta có :
1 - 3 + 5 - 7 +...... + 2001 - 2003 + 2005
= ( 1 - 3 ) + ( 5 - 7 ) +.....+ ( 2001 - 2003 ) + 2005
= -2 + ( -2 ) + .....+ ( -2 ) + 2005
Dãy trên có 501 số ( -2 )
Vậy tổng là :
501 . ( -2 ) + 2005 = 1003
Bài 1: Theo đề, ta có : a : 18 ( dư 12 ) ( a \(\in N\) )
\(\Rightarrow\) a : 2.9 ( dư 3+9 )
\(\Rightarrow\) a : 9 ( dư 3 )
Bài 2 : Theo đề, ta có : B = 6 + m + n + 12
B = ( m + n ) + ( 6 + 12 )
B = ( m + n ) + 18
Vì \(18⋮3\) nên khi ( m + n ) \(⋮\) 3 thì B \(⋮3\)
Ngược lại, khi ( m + n ) \(⋮̸\) 3 thì B \(⋮̸\) 3.
Bài 3:
Ta có : A = \(2+2^2+2^3+...+2^{49}+2^{50}\)
A = \(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{49}+2^{50}\right)\)
A = \(2\left(1+2\right)+2^3\left(1+2\right)+...+2^{49}\left(1+2\right)\)
A = \(2.3+2^3.3+...+2^{49}.3\)
A = \(3\left(2+2^3+...+2^{49}\right)\) \(⋮\) 3
Ta có : A = \(2+2^2+2^3+2^4+2^5+...+2^{49}+2^{50}\)
A = \(\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{46}+2^{47}+2^{48}+2^{49}+2^{50}\right)\)
A = \(2\left(1+2+2^2+2^3+2^4\right)+...+2^{46}\left(1+2+2^2+2^3+2^4\right)\)
A = 2 . 62 + ... + \(2^{46}.62\)
A = 62 ( 2 +...+ \(2^{46}\) )
A = 31 . 2( \(2+...+2^{46}\) ) \(⋮\) 31
Bài 4: Ta có : \(\overline{abcabc}\) = \(\overline{abc}000+\overline{abc}\) = \(\overline{abc}\left(1000+1\right)\) = \(\overline{abc}.1001\) = \(\overline{abc}.77.13\) \(⋮13\)
Vậy : \(\overline{abcabc}⋮13\)
Để mk làm bài 5 sau nha. Bây giờ đang bận
Bài 5:
a/ Ta có: \(n+5\) \(⋮\) n - 2 ( n \(\in\) N )
\(\Rightarrow\) n - 2 +7 \(⋮\) n - 2
\(\Rightarrow\) 7 \(⋮\) n - 2
\(\Rightarrow\) n - 2 \(\in\) Ư(7) = { 1 ; 7 }
\(\Rightarrow n\in\left\{3;9\right\}\)
b/ Ta có : 2n + 7 \(⋮\) n + 1 ( n \(\in\) N )
\(\Rightarrow\) 2( n + 1 ) + 5 \(⋮\) n + 1
\(\Rightarrow\) 5 \(⋮\) n + 1
\(\Rightarrow\) n + 1 \(\in\) Ư (5) = { 1 ; 5 }
\(\Rightarrow\) n \(\in\) { 0 ; 4 }
Chúc bn hc tốt!!!
2n+7 là bội của n-3
=> 2n+7 chia hết cho n-3
=> 2n-6+13 chia hết cho n-3
=> 2(n-3)+13 chia hết cho n-3
=> 13 chia hết cho n-3
=> n-3 thuộc Ư(13)={-1,-13,1,13}
n-3 | -1 | -13 | 1 | 13 |
n | 2 | -10 | 4 | 16 |
Vậy n thuộc {-10,2,4,16}
a) A = 1 + 2 + 22 + 23 + ...... + 239
= (1 + 2 + 22 + 23) + (24 + 25 + 26 + 27) + .....+ (236 + 237 + 238 + 239)
= (1 + 2 + 22 + 23) + 24(1 + 2 + 22 + 23) + .......+ 236(1 + 2 + 22 + 23)
= 15 (1 + 24 + ...... + 236 ) \(⋮15\)
Vậy A là bội của 15
b) B = 2 + 22 + 23 + ...... + 22004
= (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + ...... + (22001 + 22002 + 22003 + 22004)
= 2(1 + 2 + 23 + 24) + 25(1 + 2 + 22 + 23) + ....... + 22001(1 + 2 + 22 +23)
= 15 (2 + 25 + ..... + 22001) \(⋮15\)
Ta thấy B \(⋮2\)(vì các số hạng của B đều chia hết cho 2)
mà (2; 15) = 1
nên B \(⋮30\)
c) Gọi 3 số lẻ liên tiếp là: 2k+1; 2k+3; 2k+5
Ta có: 2k+1 + 2k+3 + 2k+5 = 6k + 9
Ta thấy 6k chia hết cho 6 nhưng 9 ko chia hết cho 6
nên 6k + 9 ko chia hết cho 6
Vậy tổng của 3 số lẻ liên tiếp ko chia hết cho 6
C = 2^1 + 2^2 + 2^3 + 2^4 + ...+ 2^100 ( có 100 số hạng)
C = (2^1+2^2+2^3+2^4) + ( 2^5+2^6+2^7+2^8)+...+(2^97+2^98+2^99+2^100) ( chia 100 số hạng ra thành 25 cặp, mỗi cặp có 4 số hạng)
C = 2.(1+2+2^2+2^3) + 2^5.(1+2+2^2+2^3)+...+2^97.(1+2+2^2+2^3)
C = 2.15 + 2^5.15 + ...+ 2^97.15
C = 15.(2+2^5+...+2^97) là bội của 15
Ta có: C là bội của 15 <=> C chia hết cho 15
C = 21 + 22 + 23 + 24 + ... + 2100
C = (21 + 22 + 23 + 24) + ... + (297 + 298 + 299 + 2100)
C = 30 + 25 . 30 + ... + 297 . 30
C = 30 . (25 + ... + 297)
C = 15 . 2 . (25 + ... + 297)
=> C chia hết cho 15