K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2018

Đặt \(A=\frac{3\left|a\right|+2}{\left|a\right|+5}\)

\(=\frac{3\left|a\right|+15-13}{\left|a\right|+5}=3-\frac{13}{\left|a\right|+5}\)

Để \(A\in Z\)

\(\Rightarrow13⋮\left(\left|a\right|+5\right)\)

\(\Rightarrow\left|a\right|+5\in\left(1;-1;13;-13\right)\)

\(\Rightarrow\left|a\right|=8\Rightarrow a=\hept{\begin{cases}8\\-8\end{cases}}\)

15 tháng 6 2016

làm ở dưới rồi đừng bắt làm lại nhé --_

15 tháng 6 2016

Câu hỏi của Lê Nguyễn Minh Hằng - Toán lớp 7 | Học trực ... - Hoc24

15 tháng 6 2016

a)\(\frac{2a+8}{5}-\frac{a}{5}=\frac{a+8}{5}\)

Để \(\frac{2a+8}{5}-\frac{a}{5}\in Z\) thì: \(a+8\in B\left(5\right)\)

b)\(\frac{2a+9}{a+3}-\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{2a+9-5a-17-3a}{a+3}=\frac{-6a-8}{a+3}\)

\(=\frac{-6a-18}{a+3}+\frac{10}{a+3}=\frac{-6.\left(a+3\right)}{a+3}+\frac{10}{a+3}=-6+\frac{10}{a+3}\)

Để: \(\frac{2a+9}{a+3}-\frac{5a+17}{a+3}-\frac{3a}{a+3}\in Z\) thì:

\(a+3\inƯ\left(10\right)=\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

=>a = -2;-4;-1;-5;2;-8;7;-13

15 tháng 6 2016

@Đặng Minh Triều a là số hữu tỉ nha bạn thanghoa

26 tháng 1 2018

câu a)

\(\frac{2a+8}{5}-\frac{a}{5}=\frac{2a+8-a}{5}=\frac{a+8}{5}\)

Để \(\frac{a+8}{5}\in Z\)thì \(a+8\)phải là bội của 5

Suy ra \(a+8\in\left\{\pm1;\pm5\right\}\)

Suy ra \(a\in\left\{-7;-9;-3;-13\right\}\)

Hết 

Câu 2 tương tự nha

26 tháng 1 2018

bạn làm hộ mink câu b được không đúng mình k cho

23 tháng 6 2019

a, Với x = 1 thì \(A=\frac{3x+2}{x-3}=\frac{3\cdot1+2}{1-3}=\frac{5}{-2}=\frac{-5}{2}\)

Với x = 2 thì \(A=\frac{3x+2}{x-3}=\frac{3\cdot2+2}{2-3}=\frac{8}{-1}=-\frac{8}{1}=-8\)

Với x =\(\frac{5}{2}\)thì : \(A=\frac{3x+2}{x-3}=\frac{3\cdot\frac{5}{2}+2}{\frac{5}{2}-3}=\frac{\frac{15}{2}+2}{\frac{5}{2}-3}=\frac{\frac{19}{2}}{-\frac{1}{2}}=\frac{19}{2}\cdot(-2)=\frac{19}{1}\cdot(-1)=-19\)

b, Ta có : \(\frac{3x+2}{x-3}=\frac{3x-9+11}{x-3}=\frac{3(x-3)+11}{x-3}=3+\frac{11}{x-3}\)

\(\Leftrightarrow11⋮x-3\Leftrightarrow x-3\inƯ(11)=\left\{\pm1;\pm11\right\}\)

Lập bảng :

x - 31-111-11
x4214-8

c,Để suy nghĩ đã

23 tháng 6 2019

Làm tiếp :v

c, \(B=\frac{x^2+3x-7}{x+3}=\frac{x(x+3)-7}{x+3}=x-\frac{7}{x+3}\)

\(\Rightarrow7⋮x+3\Leftrightarrow x+3\inƯ(7)=\left\{\pm1;\pm7\right\}\)

Lập bảng :

x + 31-17-7
x-2-44-10

d, Tương tự

6 tháng 7 2016

b.

\(\frac{7}{x-1}\in Z\)

\(\Rightarrow7⋮x-1\)

\(\Rightarrow x-1\inƯ\left(7\right)\)

\(\Rightarrow x-1\in\left\{-7;-1;1;7\right\}\)

\(\Rightarrow x\in\left\{-6;0;2;8\right\}\)

c.

\(\frac{x+2}{x-1}\in Z\)

\(\Rightarrow x+2⋮x-1\)

\(\Rightarrow x-1+3⋮x-1\)

\(\Rightarrow3⋮x-1\)

\(\Rightarrow x-1\inƯ\left(3\right)\)

\(\Rightarrow x-1\in\left\{-3;-1;1;3\right\}\)

\(\Rightarrow x\in\left\{-2;0;2;4\right\}\)

6 tháng 7 2016

\(a,\frac{x+3}{5}\in\Leftrightarrow x+3\in B5\Leftrightarrow x\in B5-3\)

\(b,\frac{7}{x-1}\in Z\Leftrightarrow x-1\inƯ7\Leftrightarrow x-1\in\left\{\pm1;\pm7\right\}\Leftrightarrow x\in\left\{-6;0;2;8\right\}\)

\(c,\frac{x+2}{x-1}\in Z\Leftrightarrow\frac{x-1+3}{x-1}\in Z\Leftrightarrow1+\frac{3}{x-1}\in Z\Leftrightarrow\frac{3}{x-1}\in Z\)

\(\Leftrightarrow x-1\inƯ3\Leftrightarrow x-1\in\left\{\pm1;\pm3\right\}\Leftrightarrow x\in\left\{-2;0;2;4\right\}\)

3 tháng 2 2017

a) A = n/3 + n2/2 + n3/6

A = 2n+3n2+n3/6

A = 2n+2n2+n2+n3/6

A = (n+1)(2n+n2)/6

A = n(n+1)(n+2)/6

Vì n(n+1)(n+2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3

Mà (2;3)=1 => n(n+1)(n+2) chia hết cho 6

Hay A thuộc Z (đpcm)

b) B = n4/24 + n3/4 + 11n2/24 + n/4

B = n4+6n3+11n2+6n/24

B = n(n3+6n2+11n+6)/24

B = n(n3+n2+5n2+5n+6n+6)/24

B = n(n+1)(n2+5n+6)/24

B = n(n+1)(n2+2n+3n+6)/24

B = n(n+1)(n+2)(n+3)/24

Vì n(n+1)(n+2)(n+3) là tích 4 số nguyên liên tiếp nên chia hết cho 8 và 3

Mà (8;3)=1 => n(n+1)(n+2)(n+3) chia hết cho 24

Hay B nguyên (đpcm)

7 tháng 11 2019

Bài 2:

b) Với y = 0 thì vt của pt thứ 2 = 0 => loại.

Xét y khác 0:

Nhân pt thứ nhất với \(\frac{7}{5}\) rồi trừ đi pt thứ 2 thu được:

\(\frac{14}{5}x^3+\frac{21}{5}x^2y-y^3-6xy^2=0\)

\(\Leftrightarrow\frac{1}{5}\left(x-y\right)\left(14x^2+35xy+5y^2\right)=0\)

Với x = y, thay vào pt thứ 2:

\(7x^3=7\Rightarrow x=1\Rightarrow y=1\)

Với \(14x^2+35xy+5y^2=0\)

\(\Leftrightarrow14\left(\frac{x}{y}\right)^2+35\left(\frac{x}{y}\right)+5=0\)

Đặt \(\frac{x}{y}=t\) suy ra: \(14t^2+35t+5=0\Rightarrow\left[{}\begin{matrix}t=\frac{-35+3\sqrt{105}}{28}\\t=\frac{-35-3\sqrt{105}}{28}\end{matrix}\right.\)

Nghiệm xấu quá, chị tự thay vào giải nốt :D. Nhớ check xem em có tính nhầm chỗ nào ko:D

7 tháng 11 2019

3/ Sửa phân thức thứ 3 thành: \(\frac{1}{1+c^3}\).

Quy đồng lên ta cần chứng minh: \(\frac{\Sigma_{cyc}\left(1+a^3\right)\left(1+b^3\right)}{\left(1+a^3\right)\left(1+b^3\right)\left(1+c^3\right)}\ge\frac{3}{1+abc}\)

\(\Leftrightarrow abc\left(a^3b^3+b^3c^3+c^3a^3\right)+2abc\left(a^3+b^3+c^3\right)-3a^3b^3c^3-\left[a^3+b^3+c^3-3abc+2\left(a^3b^3+b^3c^3+c^3a^3\right)\right]\ge0\)Đến đây chắc là đổi biến sang pqr rồi làm nốt ạ! Hơi trâu bò tí, cách khác em chưa nghĩ ra.