\(x+x\cdot9=90\)
\(x\cdot4+x\cdot25=1000\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk: x khác 0;
pt \(\Leftrightarrow-9\cdot2^{\frac{1}{x}}-5\cdot2^{\frac{1}{x}}\cdot3^{\frac{1}{x}}+4\cdot3^{\frac{2}{x}}=0\)
\(\Leftrightarrow4\cdot\left(3^{\frac{1}{x}}\right)^2-5\cdot2^{\frac{1}{x}}\cdot3^{\frac{1}{x}}-9\cdot2^{\frac{1}{x}}=0\)
xem pt trên là pt bậc hai ẩn 31/x, ta có: \(\Delta=\left(5\cdot2^{\frac{1}{x}}\right)^2-4\cdot4\cdot\left(-9\cdot2^{\frac{2}{x}}\right)=169\cdot2^{\frac{1}{x}}\)
\(3^{\frac{1}{x}}=\frac{5\cdot2^{\frac{1}{x}}-13\cdot2^{\frac{1}{x}}}{2\cdot4}=-2^{\frac{1}{x}}\) (loại)
\(3^{\frac{1}{x}}=\frac{5\cdot2^{\frac{1}{x}}+13\cdot2^{\frac{1}{x}}}{2\cdot4}=\frac{9}{4}\cdot2^{\frac{1}{x}}\Leftrightarrow3^{\frac{1}{x}-2}=2^{\frac{1}{x}-2}\Leftrightarrow\frac{1}{x}-2=0\Leftrightarrow x=\frac{1}{2}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{22}{45}\) vậy
\(\frac{11}{45}.x=\frac{22}{45}\)
\(x=\frac{22}{45}\div\frac{11}{45}=2\)
vậy suy ra x =2
mình chắc chắn 100% luôn đó, cái này ở trong violympic toán 7 vòng 12 phải ko
\(\frac{5^{102}\cdot9^{1000}}{3^{2018}\cdot25^{50}}=\frac{5^{102}\cdot3^{2000}}{3^{2018}\cdot5^{100}}=\frac{5^2}{3^{18}}\)
X=2 nhé bạn.....đúng đó, vòng 12 mk 300 mà cx gặp câu này!!! Tick nha
Trước hết ta thực hiện biểu thức trong ngoặc:
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{8.9.10}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{90}\right)\)
\(=\frac{1}{2}.\frac{22}{45}\) \(=\frac{11}{45}\)
\(\Rightarrow\frac{11}{45}\) \(.x=\frac{22}{45}\)
\(\Rightarrow x=\frac{22}{45}:\frac{11}{45}\)
\(\Rightarrow x=2\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}.\frac{22}{45}.x=\frac{23}{45}\)
\(\frac{11}{45}.x=\frac{23}{45}\)
\(x=\frac{23}{45}:\frac{11}{45}\)
\(x=\frac{23}{11}\)
bài 1:\(x+x\cdot9=90\)
\(x\cdot10=90\)
\(x=90:10\)
\(x=9\)
bài 2:\(x\cdot4=x\cdot25=1000\)
\(x\cdot100=1000\)
\(x=1000:100\)
\(x=10\)
x+x.9=90 =>x=9
x.4+x.25=1000 =>x=1000/29