Chứng minh rằng trong năm số tự nhiên liên tiếp luôn có 1 số chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có:
45 + 99 + 180 = 324
Vì: Số tận cùng của nó là số 4
=> 324 chia hết cho 2
Bài 1
chỉ cần tính ra kết quả là đc
Bài 2
Giả sử một số tự nhiên bất kì = n
=> 2 số tự nhiên liên tiếp là n và n+1
- Với n = 2k+1=>n+1 = 2k+2 chia hết 2
- Với n = 2k => n chia hết 2
Vậy trong 2 số tự nhiên liên tiếp luôn có 1 số chia hết 2
vì cứ 5 đơn vị lại có 1 số chia hết cho 5 nên 5 số liên tiếp sẽ có 1 số chia hết cho 5
Gọi 5 số tự nhiên liên tiếp là :a,a+1,a+2,a+3,a+4 ( với a thuộc số tự nhiên )
Một số khi chia hết cho 5 thì có dạng tổng quát là :5k,5k+1,5k+2,5k+3,5k+4 ( với k thuộc số tự nhiên )
Nếu a = 5k thì suy ra a chia hết cho 5
Nếu a = 5k+1 thì suy ra a+4 = 5k+1+4 = 5k+5 chia hết cho 5
Nếu a = 5k+2 thì suy ra a+3 = 5k+2+3 = 5k+5 chia hết cho 5
Nếu a = 5k+3 thì suy ra a+2 = 5k+2+3 = 5k+5 chia hết cho 5
Nếu a = 5k+4 thì suy ra a+1 = 5k+4+1 = 5k+5 chia hết cho 5
=>trong 5 số tự nhiên liên tiếp có 1 số chia hết cho 5 ( đpcm).
ta có 5 số tn liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 => điều phải chứng minh
nếu n chia cho 5 dư 1 => n +4 chia hết cho 5 => điều phải chứng minh
nếu n chia cho 5 dư 2 => n +3 chia hết cho 5 => điều phải chứng minh
nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => điều phải chứng minh
nếu n chia cho 5 dư 4 => n +1 chia hết cho 5 => điều phải chứng minh
a, ta có 5 số tn liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 1 => n +4 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 2 => n +3 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 4 => n +1 chia hết cho 5 => ĐPCM
Vậy trong 5 số tự nhiên liên tiếp luôn có một số chia hết cho 5
ta có 5 số tự nhiên liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 . suy ra: (đpcm )
* nếu n chia hết cho 5 dư 1 =>n+4 chia hết cho 5 => đpcm
* nếu n chia hết cho 5 dư 2 =>n+3 chia hết cho 5 => đpcm
* nếu n chia hết cho 5 dư 3 =>n+2 ...................... => đpcm
* nếu n chia hết cho 5 dư 4 =>n+1....................... => đpcm
k cho mình nhế
Bài làm
Gọi 5 số liên tiếp bất kì là: n; n + 1; n + 2 ; n + 3; n + 4.
Nếu n : 5 dư 1 => n + 4 chia hết cho 5.
n : 5 dư 2 => n + 3 chia hết cho 5.
n : 5 dư 3 => n + 2 chia hết cho 5.
n : 5 dư 4 => n + 1 chia hết cho 5.
n : 5 mà không dư => n chia hết cho 5
=> 5 số tự nhiên liên tiếp n; n + 1; n + 2; n + 3; n + 4 chia hết cho 5
Vậy 5 số tự nhiên liên tiếp bất kì luôn có một số chia hết cho 5. ( đpcm )
~ Chắc zậy ~
# Chúc bạn học tốt #