K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2022

Làm cho mik ý b và c

26 tháng 7 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) CE và EB là 2 tiếp tuyến cắt nhau tại E

⇒ EC = EB và CB ⊥ OE

Tương tự, DC và DA là 2 tiếp tuyến cắt nhau tại D

⇒ DC = DA và AC ⊥ OD

Khi đó: AD + BE = DC + EC = DE

9 tháng 3 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

c) Xét tam giác DOC vuông tại C, CM là đường cao có:

OM.OD = OC 2 = R 2

Xét tam giác EOC vuông tại C, CN là đường cao có:

ON.OE =  OC 2 = R 2

Khi đó: OM.OD + ON.OE = 2 R 2

Vậy OM.OD + ON.OE không đổi

17 tháng 12 2023

a: Xét (O) có

DA,DE là các tiếp tuyến

=>DA=DE và OD là phân giác của góc AOE

OD là phân giác của góc AOE

=>\(\widehat{AOE}=2\cdot\widehat{DOE}\)

Xét (O) có

CE,CB là các tiếp tuyến

Do đó: CE=CB và OC là phân giác của góc EOB

OC là phân giác của góc EOB

=>\(\widehat{EOB}=2\cdot\widehat{EOC}\)

Ta có: \(\widehat{EOA}+\widehat{EOB}=180^0\)(hai góc kề bù)

=>\(2\left(\widehat{EOC}+\widehat{EOD}\right)=180^0\)

=>\(2\cdot\widehat{DOC}=180^0\)

=>\(\widehat{DOC}=90^0\)

Ta có: ΔOED vuông tại E

=>\(OE^2+ED^2=OD^2\)

=>\(ED^2+6^2=10^2\)

=>\(ED^2=100-36=64\)

=>\(ED=\sqrt{64}=8\left(cm\right)\)

Xét ΔODC vuông tại O có OE là đường cao

nên \(DE\cdot DC=DO^2\)

=>\(8\cdot DC=10^2=100\)

=>DC=100/8=12,5(cm)

Xét ΔDOE vuông tại E có \(sinDOE=\dfrac{DE}{DO}=\dfrac{4}{5}\)

nên \(\widehat{DOE}\simeq53^0\)

b: Gọi F là trung điểm của DC

Ta có: ΔDOC vuông tại O

mà OF là đường trung tuyến

nên OF=FD=FC

=>F là tâm đường tròn ngoại tiếp ΔDOC

Xét hình thang ABCD có

O,F lần lượt là trung điểm của AB,CD

=>OF là đường trung bình của hình thang ABCD

=>OF//AD//CB

Ta có: OF//AD

AD\(\perp\)AB

Do đó: FO\(\perp\)AB

=>AB là tiếp tuyến của (F)

=>AB là tiếp tuyến của đường tròn ngoại tiếp ΔODC

16 tháng 11 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

d) Ta có: N là trung điểm của BC

⇒ AN là trung tuyến của ΔABC

CO cũng là trung tuyến của ΔABC

AN ∩ CO = H

⇒ H là trọng tâm ΔABC

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy khi C di chuyển trên nửa đường tròn (O) thì H di chuyển trên nửa đường tròn

(O; R/3)

29 tháng 5 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Xét tứ giác OMCN có:

∠(OMC) = 90 0  (AC ⊥ OD)

∠(ONC) = 90 0  (CB ⊥ OE)

∠(NCM) = 90 0  (AC ⊥ CB)

⇒ Tứ giác OMCN là hình chữ nhật

a: góc CAO+góc CMO=180 độ

=>CAOM nội tiếp

góc DMO+góc DBO=180 độ

=>DMOB nội tiếp

b: Xét (O) có

CM,CA là tiếp tuyến

=>CM=CA và OC là phân giác của góc MOA(1)

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB và OD là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc DOC=1/2*180=90 độ

Xét ΔDOC vuông tại O có OM là đường cao

nên CM*MD=OM^2

=>AC*BD=R^2

a: Xét (O) có 

DA là tiếp tuyến có A là tiếp điểm

DC là tiếp tuyến có C là tiếp điểm

Do đó: DA=DC

Xét (O) có 

EC là tiếp tuyến có E là tiếp điểm

EB là tiếp tuyến có B là tiếp điểm

Do đó: EC=EB

Ta có: CD+CE=DE

nên DA+EB=DE

9 tháng 9 2021

giải tiếp cho em câu b và c luôn đc ko ạ ?