cho tứ giác ABCD, 2 đg chéo cắt nhau tại I,AB<BC<CD cmr
a. AB^2+CB^2=BC^2+AD^2
b. BC-AD>CD-AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔADB nội tiếp
AB là đường kính
=>ΔADB vuông tại D
Xét (O) có
ΔACB nội tiếp
AB là đường kính
=>ΔABC vuông tại C
Xét ΔEDA vuông tại D và ΔECB vuông tại C có
góc DEA=góc CEB
=>ΔEDA đồng dạng với ΔECB
=>ED/EC=EA/EB
=>ED*EB=EC*EA
b: góc DCA=1/2*sđ cung AD
góc FCA=góc DBA=1/2*sđ cung AD
=>góc DCA=góc FCA
=>CA là phân giác của góc DCF
c: Xét ΔQAB có
QF,BD là đường cao
QF cắt BD tại E
=>E là trực tâm
=>AC vuông góc BQ
mà AC vuông góc BC
nên B,C,Q thẳng hàng
A B C D M N O F E
a)
Tứ giác BMDN có BN=DM (=1/2AD=1/2BC) VÀ BN//DM (AD//BC) nên BMDN là hình bình hành. => BM//DN
Tam giác ADF có:
M là trung điểm của AD
ME//DF ( BM//DN )
Suy ra E là trung điểm của AF hay AE=EF (1)
Tam giác BCE có:
N là trung điểm của BC
NF//DE ( BM//DN )
Suy ra F là trung điểm của CE hay EF=FC (2)
Từ (1) và (2) suy ra AE=EF=FC
b)
Xét \(\Delta AME\)và \(\Delta CNF\)CÓ
AM=CN ( =1/2AD = 1/2BC )
AE=CF (Theo câu a)
\(\widehat{MAE}=\widehat{NCF}\)(Vì AD//BC)
Suy ra \(\Delta AME=\Delta CNF\left(c.g.c\right)\)
\(\Rightarrow ME=NF\)( 2 cạnh tương ứng)
Mà ME//NF ( Vì BM//DN ) nên tứ giác MENF là hình bình bình hành
Các bạn nhớ k ủng hộ mik nha! Thanks!