K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2018

\(xy\ge6;y\ge3\Leftrightarrow x\ge2\)

\(GTNN_P=3+2=5\)

Vậy Min P = 5<=> x = 2 ; y = 3

23 tháng 12 2018

Phạm Tuấn Đạt -,- CTV trash ak 

Bài 1 : (nguồn: Nguyễn Hưng Phát CTV) đừng bảo t copy -,- 

\(P=x+y+2013=\left(x+\frac{2}{3}y\right)+\frac{1}{3}y+2013\ge2\sqrt{\frac{2}{3}xy}+\frac{1}{3}y+2013\)

\(\ge2\sqrt{\frac{2}{3}.6}+\frac{1}{3}.3+2013=4+1+2013=2018\)

Dấu  "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x=\frac{2}{3}y\\xy=6\\y=3\end{cases}\Leftrightarrow x=2;y=3}\)

... 

Bài 2 làm sau 

chịu thua vô điều kiện xin lỗi nha : v

muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v

1 tháng 3 2017

=0,5

Vì có gtnn khi xy=yz=zx=1:9 => x=y=z=1:3

Thay số và tính được gtnn là A=0.5

1 tháng 3 2017

đây nhé Xem câu hỏi

7 tháng 10 2019

Ta có: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(BĐT Svacxo)

\(\Rightarrow\frac{1}{2}\ge\frac{4}{x+y}\)

\(\Leftrightarrow x+y\ge8\)(1)

Áp dụng BĐT Cauchy cho 2 số không âm:

\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}=\frac{2}{\sqrt{xy}}\)

\(\Rightarrow\frac{1}{2}\ge\frac{2}{\sqrt{xy}}\)

\(\Leftrightarrow\sqrt{xy}\ge4\)(2)

Từ (1) và (2) suy ra \(x+\sqrt{xy}+y\ge16\)

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2\ge16\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y}\ge4\)

10 tháng 10 2019

Muốn cô k cũng dễ lắm. Tuy nhiên cái cô muốn là các em làm được bài trên OLM sẽ nhìn ra được những lỗi sai của mình thì để lần sau trong các cuộc thi HSG hay các bài kiểm tra trên lớp sẽ không bị mắc phải những cái lỗi tương tự.

bài phía dưới: Từ (1) , (2) => \(x+2\sqrt{xy}+y\ge16\) nha

Bỏ qua lỗi này. Cái quan trọng là khi tìm giá trị lớn nhất hoặc nhỏ nhất em cần phải biết nó đạt tại x =?, y=?.

nếu bỏ qua phần này sẽ bị trừ điểm rất nặng. :)

7 tháng 10 2019

tích cho t nha

7 tháng 10 2019

làm đi r le duy manh

24 tháng 10 2019

@Akai Haruma

@Trần Thanh Phương

@HISINOMA KINIMADO

NV
7 tháng 10 2019

\(xy=2\left(x+y\right)\ge4\sqrt{xy}\Rightarrow\sqrt{xy}\ge4\)

\(\Rightarrow A=\sqrt{x}+\sqrt{y}\ge2\sqrt{\sqrt{xy}}\ge2\sqrt{4}=4\)

Dấu "=" xảy ra khi \(x=y=4\)

6 tháng 11 2017

a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3

MInA=3<=>x=y=z=1

6 tháng 11 2017

b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)

24 tháng 10 2019

@Nguyễn Việt Lâm

@Lê Thị Thục Hiền

@Phạm Minh Quang

24 tháng 10 2019

mất dạy nỏ đi hk