\(\frac{3^{17}.81^{11}}{27^{10}.9^{15}}+\frac{9^2.2^{11}}{16^2.6^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3^{17}.81^{11}}{27^{10}.9^{15}}=\frac{3^{17}.\left(3^4\right)^{11}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\frac{3^{17}.3^{44}}{3^{30}.3^{30}}=\frac{3^{61}}{3^{60}}=3\)
b) \(\frac{9^2.2^{11}}{16^2.6^3}=\frac{\left(3^2\right)^2.2^{11}}{\left(2^4\right)^2.\left(2.3\right)^3}=\frac{3^4.2^{11}}{2^8.2^3.3^3}=3\)
c) \(\frac{2^{10}.3^{31}+2^{40}.3^6}{2^{11}.3^{31}+2^{41}.3^6}=\frac{2^{10}.3^6.\left(3^{25}+2^{30}\right)}{2^{11}.3^6.\left(3^{25}+2^{30}\right)}=\frac{1}{2}\)
d) \(a.\left(-b\right).\left(-a\right)^2\left(-b\right)^3.\left(-a\right)^3.\left(-b\right)^4=-a^6b^8\)
a) \(\frac{3^{17}.81^{11}}{27^{10}.9^{15}}=\frac{3^{17}.\left(3^4\right)^{11}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\frac{3^{17}.3^{44}}{3^{30}.3^{30}}=\frac{3^{61}}{3^{60}}=3\)
b) \(\frac{9^2.2^{11}}{16^2.6^3}=\frac{\left(3^2\right)^2.2^{11}}{\left(2^4\right)^2.2^3.3^3}=\frac{3^4.2^{11}}{2^8.2^3.3^3}=\frac{3^4.2^{11}}{2^{11}.3^3}=3\)
c) \(\frac{2^{10}.3^{31}+2^{40}.3^6}{2^{11}.3^{31}+2^{41}.3^6}=\frac{2^{10}.3^{31}+2^{40}.3^6}{2.\left(2^{10}.3^{31}+2^{40}.3^6\right)}=\frac{1}{2}\)
a) 378
b) 3
c) 2
d) 2
e) \(\frac{8748}{1715}\)
Mình thấy bài e) bạn có ghi thiếu ko vậy.81^2 x;: hay là cộng trừ vậy?
3^12.(3^4)^11/(3^3)^10.(3^2)^15=3^12.3^44/3^30.3^30=3^56/3^30
=3^17.9^22/3^30.9^15=9^7/3^13=3^14/3^13=3^1=3
giùm nhé bạn
317.8111/2710.915
=317.(34)11/(33)10.(32)15
=317.344/330.330
=361/360
=3