CMR \(16^n-15n-1⋮225\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều phải CM đúng với n = 1 , khi đó , ta có :
161 - 15.1 - 1 = 0 ⋮225
Gỉa sử điều phải CM đúng với : n = k , ta có :
16k - 15.k - 1 ⋮225
Ta CMR điều phải CM cũng đúng với n = k + 1 , Ta có :
16k+1 - 15( k + 1) - 1
= 16.16k - 15k - 15 - 1 = ( 16k - 15k - 1) + 15.16k - 15
( Vì 16.16k = ( 15 + 1)16k = 16k + 15.16k )
Theo giả thiết trên thì : 16k - 15k - 1 ⋮ 225
Còn : 15.16k - 15 = 15( 16k - 1)
Mà : 16k - 1 ⋮( 16 - 1)
⇒15( 16k - 1) ⋮ 15.15 = 225
⇒ đpcm
Giải:
Với n=1 thì 16n – 15n – 1 = 16 – 15 – 1 = 0 ⋮ 225
Giả sử 16k – 15k – 1 ⋮ 225
Ta chứng minh 16k+1 – 15(k+1) – 1 ⋮ 225
Thực vậy: 16k+1 – 15(k+1) – 1 = 16.16k – 15k – 15 – 1
= (16k – 15k – 1) + 15.16k – 15
Theo giả thiết qui nạp 16k – 15k – 1 ⋮ 225
Còn 15.16k – 15 = 15(16k – 1) ⋮ 15.15 = 225
Vậy 16n – 15n – 1 ⋮ 225.
Đặ Un=16^n-15n-1=225
Gỉa sử ta có Un chia hết cho 225 với n bằng một giá trị k bất kì (k>=1) tức là Uk=16^k-15k-1 chia hết cho 225
Do đó ta cần chứng minh tiếp U[k+1]=16^k+1-15k-1 chia hết cho 225 là ok
Nên ta có tiếp 16^(k+1)-15(k+1)-1=16^16k-15k-15-1=16^k-15k-1+15*16^k-15=Uk+15+(16^k-1)*(1) do đó nên ta đã có Uk chia hết cho 225.Rồi ta chỉ cần chứng minh cho 16^k-1 chia hết cho 15 là được
Em thử quy nạp nhé!
Với n = 1 thì mệnh đề đúng
Giả sử đúng với n = k thuộc N* tức là \(16^k-15k-1⋮225\) (giả thiết quy nạp)
Cần chứng minh nó đúng với n = k + 1. Tức là chứng minh \(16^{k+1}-15\left(k+1\right)-1⋮225\)
\(\Leftrightarrow16^k.16-15k-16⋮225\)
\(\Leftrightarrow16\left(16^k-15k-1\right)+15.15k⋮225\) (luôn đúng theo giả thiết quy nạp)
Ta có đpcm
n nguyên dương nên \(n\ge1\)
+) Xét n = 1 thì \(16^n-15n-1=0⋮225\)
Như vậy thì khẳng định đúng với n = 1
+) Giả sử khẳng định đúng với n = t tức là \(16^t-15t-1⋮225\)
Ta chứng minh khẳng định đúng với n = t + 1
Thật vậy: \(16^{t+1}-15\left(t+1\right)-1=16^t\left(15+1\right)-15t-15-1\)
\(=\left(16^t-15t-1\right)+15\left(16^t-1\right)\)
Ta có: \(16^t-1⋮16-1=15\)suy ra \(15\left(16^t-1\right)⋮225\)
Mà \(\left(16^t-15t-1\right)⋮225\)(Theo giả sử) nên \(16^{t+1}-15\left(t+1\right)-1⋮225\)
Vậy \(16^n-15n-1⋮225\forall n\inℕ^∗\)
Gọi T(n) là mệnh đề cần chứng minh
*Khi n=1, ta có: \(16^1-15.1-1=0\) chia hết cho 225. Vậy T(1) đúng.
* Giả sử T(k) đúng tức là \(16^k-15k-1\) chia hết cho 225
* Chứng minh T(k+1) đúng tức là chứng minh
\(16^{k+1}-15\left(k+1\right)-1\) chia hết cho 225
Ta có: \(16^{k+1}-15\left(k+1\right)-1=16^k.16-15k-16\)
Vì: \(16^k-15k-1=n.225\)(vì chia hết cho 225)
\(\Rightarrow16^k=225n+15k+1\)
Do đó: \(16^{k+1}-15\left(k+1\right)-1=16\left(225n+15k+1\right)-15k-16=225\left(16n+k\right)\) là bội số của 225
Hay \(16^{k+1}-15\left(k+1\right)-1\) chia hết cho 225
Vậy T(k+1) đúng
Theo nguyên lí quy nạp, ta kết luận T(n) đúng với mọi n \(\in N\)
đề đủ là \(CMR:16^n-15n-1⋮225\forall n\in N^{\circledast}\)
bài lm
nếu \(n=1\Rightarrow16^n-15n-1=0⋮225\)
giả sử : \(n=k\) thì ta có : \(16^n-15n-1=16^k-15k-1⋮225\)
khi đó nếu \(n=k+1\) thì ta có :
\(16^n-15n-1=16^{k+1}-15\left(k+1\right)-1=16.16^k-15k-15-1\)
\(16.16^k-16.15k-16+15.15k=16\left(16^k-15k-1\right)+225k⋮225\)
\(\Rightarrow\left(đpcm\right)\)