Chứng tỏ số \(A=0,17\cdot\left(23^{2010}-2017^{2020}\right)\)là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2\left(\dfrac{2}{3.5}+\dfrac{4}{5.9}+...+\dfrac{16}{n\left(n+16\right)}\right)=\dfrac{16}{25}\)
\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{n}-\dfrac{1}{n+16}=\dfrac{8}{25}\)
\(\dfrac{1}{3}-\dfrac{1}{n+16}=\dfrac{8}{25}\)
\(\dfrac{n+13}{3\left(n+16\right)}=\dfrac{8}{25}\)
\(24n+384=25n+325\)
\(25n-24n=384-325\)
\(n=59\)
\(M=\sqrt{\frac{\left(a^2+2020\right)\left(b^2+2020\right)}{c^2+2020}}\)
\(=\sqrt{\frac{\left(a^2+ab+bc+ac\right)\left(b^2+ab+bc+ac\right)}{c^2+ab+bc+ac}}\)
\(=\sqrt{\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(b+a\right)}{\left(c+a\right)\left(c+b\right)}}\)
\(=a+b\) là 1 số hữu tỉ
=> M là 1 số hữu tỉ (đpcm)
\(A=1-\frac{3}{4}+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^4-...-\left(\frac{3}{4}\right)^{2009}+\left(\frac{3}{4}\right)^{2010}\)
\(\Rightarrow\frac{3}{4}A=\frac{3}{4}-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^2+-\left(\frac{3}{4}\right)^4+...+\left(\frac{3}{4}\right)^{2010}-\left(\frac{3}{4}\right)^{2011}\)
\(\Rightarrow\frac{3}{4}A+A=\frac{3}{4}-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^2+-\left(\frac{3}{4}\right)^4+...+\left(\frac{3}{4}\right)^{20010}-\left(\frac{3}{4}\right)^{2011}\)
\(+1-\frac{3}{4}+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^4-...-\left(\frac{3}{4}\right)^{2009}+\left(\frac{3}{4}\right)^{2010}\)
\(\Rightarrow\frac{7}{4}A=1-\left(\frac{3}{4}\right)^{2011}\)
\(\Rightarrow A=\frac{4}{7}-\frac{4}{7}.\left(\frac{3}{4}\right)^{2011}\)
\(\Rightarrow A=\frac{4}{7}-\frac{3^{2011}}{7.4^{2010}}\)
Vậy A không là số tự nhiên
1/ \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}\)
\(B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)
\(B< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(B< \dfrac{1}{1}-\dfrac{1}{8}< 1\)
\(B< 1\)
2/ \(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{20}\right)\)
\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{19}{20}\)
\(B=\dfrac{1\times2\times3\times...\times19}{2\times3\times4\times...\times20}\)
\(B=\dfrac{1}{20}\)
3/ \(A=\dfrac{7}{4}\cdot\left(\dfrac{3333}{1212}+\dfrac{3333}{2020}+\dfrac{3333}{3030}+\dfrac{3333}{4242}\right)\)
\(A=\dfrac{7}{4}\cdot\left(\dfrac{33}{12}+\dfrac{33}{20}+\dfrac{33}{30}+\dfrac{33}{42}\right)\)
\(A=\dfrac{7}{4}\cdot\left(\dfrac{33}{3.4}+\dfrac{33}{4.5}+\dfrac{33}{5.6}+\dfrac{33}{6.7}\right)\)
\(A=\dfrac{7}{4}.33.\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)
\(A=\dfrac{231}{4}.\left(\dfrac{1}{3}-\dfrac{1}{7}\right)\)
\(A=\dfrac{231}{4}\cdot\dfrac{4}{21}\)
\(A=11\)
4/ A phải là \(\dfrac{2011+2012}{2012+2013}\)
Ta có : \(B=\dfrac{2011}{2012}+\dfrac{2012}{2013}>\dfrac{2011}{2013}+\dfrac{2012}{2013}=\dfrac{2011+2012}{2013}>\dfrac{2011+2012}{2012+2013}=A\)
\(\Rightarrow B>A\)