Bài 1:Cho \(x+y+z=0\) .Tính:
\(P=\frac{\left(xy+2z^2\right)\left(yz+2x^2\right)\left(zx+2y^2\right)}{\left(2x^2+2yz^2+2zx^2+3xyz\right)^2}\)
Bài 2:cho \(a;b;c\ge0\),thỏa mãn :\(\left(a^2+b+\frac{3}{4}\right)\left(b^2+a+\frac{3}{4}\right)=\left(2a+\frac{1}{2}\right)\left(2b+\frac{1}{2}\right)\)
Tính \(P=\left(a+b-1\right)^{2018}\)
Bài 3: Cho \(\hept{\begin{cases}\frac{4x^2}{4x^2+1}=y\\\frac{4y^2}{4y^2+1}=z\\\frac{4z^2}{4z^2+1}=x\end{cases}}\)
Tính \(x^2+y^{2018}-z^{2018}\)