K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2019

                  Giải

Ta có : \(\hept{\begin{cases}x\left(x+y+z\right)=-5\\y\left(x+y+z\right)=9\\z\left(x+y+z\right)=5\end{cases}}\Rightarrow x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=-5+9+5\)

\(\Rightarrow\left(x+y+z\right)\left(x+y+z\right)=9\)

\(\Rightarrow\left(x+y+z\right)^2=3^2\)

\(\Rightarrow x+y+z=3\)

\(\Rightarrow\hept{\begin{cases}3x=-5\\3y=9\\3z=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-5}{3}\\y=3\\z=\frac{5}{3}\end{cases}}\)

Mà x , y , z là các số nguyên nên không có nghiệm x , y , z cần tìm

tim x,y,z biet y^2=y-1; x^2=x-1; z^2=z-1

NhOk ChỈ Là 1 FaN CuỒnG CủA KhẢi tra loi vay thi chet ho cai.

14 tháng 3 2016

Áp dụng bất đẳng thức cho ba số  \(x,y,z\in Z^+\), ta được
\(x^2+y^2\ge2xy\)  \(\Rightarrow\)  \(\frac{x+y}{x^2+y^2}\le\frac{x+y}{2xy}\)  \(\left(1\right)\)

\(y^2+z^2\ge2yz\)   \(\Rightarrow\)  \(\frac{y+z}{y^2+z^2}\le\frac{y+z}{2yz}\)  \(\left(2\right)\)

\(z^2+x^2\ge2xz\)  \(\Rightarrow\)  \(\frac{z+x}{z^2+x^2}\le\frac{z+x}{2xz}\)  \(\left(3\right)\)

Cộng từng vế của  \(\left(1\right);\)  \(\left(2\right)\)  và  \(\left(3\right)\)  ta được  \(\frac{x+y}{x^2+y^2}+\frac{y+z}{y^2+z^2}+\frac{z+x}{z^2+x^2}\le\frac{x+y}{2xy}+\frac{y+z}{2yz}+\frac{z+x}{2xz}=\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}+\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}\)

\(\Leftrightarrow\)  \(P\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2015\)

Dấu  \("="\)  xảy ra  khi và chỉ khi  \(x=y=z=\frac{3}{2015}\)

Vậy,  \(P_{max}=2015\)  \(\Leftrightarrow\)   \(x=y=z=\frac{3}{2015}\)

28 tháng 12 2021

Ta có : 

\(\frac{-6}{12}=\frac{x}{8}=\frac{-7}{y}=\frac{z}{-18}=\frac{-1}{2}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{-1}{2}\Rightarrow x=\left(-4\right)\\\frac{-7}{y}=\frac{-1}{2}\Rightarrow y=14\\\frac{z}{-18}=\frac{-1}{2}\Rightarrow z=9\end{cases}}\)

Vậy ...