Tim cac so nguyen x,y,z biet
x(x+y+z)=-5
y(x+y+z)=9
z(x+y+z)=5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NhOk ChỈ Là 1 FaN CuỒnG CủA KhẢi tra loi vay thi chet ho cai.
Áp dụng bất đẳng thức cho ba số \(x,y,z\in Z^+\), ta được
\(x^2+y^2\ge2xy\) \(\Rightarrow\) \(\frac{x+y}{x^2+y^2}\le\frac{x+y}{2xy}\) \(\left(1\right)\)
\(y^2+z^2\ge2yz\) \(\Rightarrow\) \(\frac{y+z}{y^2+z^2}\le\frac{y+z}{2yz}\) \(\left(2\right)\)
\(z^2+x^2\ge2xz\) \(\Rightarrow\) \(\frac{z+x}{z^2+x^2}\le\frac{z+x}{2xz}\) \(\left(3\right)\)
Cộng từng vế của \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\) ta được \(\frac{x+y}{x^2+y^2}+\frac{y+z}{y^2+z^2}+\frac{z+x}{z^2+x^2}\le\frac{x+y}{2xy}+\frac{y+z}{2yz}+\frac{z+x}{2xz}=\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}+\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}\)
\(\Leftrightarrow\) \(P\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2015\)
Dấu \("="\) xảy ra khi và chỉ khi \(x=y=z=\frac{3}{2015}\)
Vậy, \(P_{max}=2015\) \(\Leftrightarrow\) \(x=y=z=\frac{3}{2015}\)
Ta có :
\(\frac{-6}{12}=\frac{x}{8}=\frac{-7}{y}=\frac{z}{-18}=\frac{-1}{2}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{-1}{2}\Rightarrow x=\left(-4\right)\\\frac{-7}{y}=\frac{-1}{2}\Rightarrow y=14\\\frac{z}{-18}=\frac{-1}{2}\Rightarrow z=9\end{cases}}\)
Vậy ...
Giải
Ta có : \(\hept{\begin{cases}x\left(x+y+z\right)=-5\\y\left(x+y+z\right)=9\\z\left(x+y+z\right)=5\end{cases}}\Rightarrow x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=-5+9+5\)
\(\Rightarrow\left(x+y+z\right)\left(x+y+z\right)=9\)
\(\Rightarrow\left(x+y+z\right)^2=3^2\)
\(\Rightarrow x+y+z=3\)
\(\Rightarrow\hept{\begin{cases}3x=-5\\3y=9\\3z=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-5}{3}\\y=3\\z=\frac{5}{3}\end{cases}}\)
Mà x , y , z là các số nguyên nên không có nghiệm x , y , z cần tìm