K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2018

I = 1 x 1 + 2 x 2 + 3 x 3 + ... + 100 x 100

I = \(\frac{100\times\left(100+1\right)\times\left(200+1\right)}{6}\)

I = 338350

^^

8 tháng 8 2018

I = 1x1 + 2x2 + 3x3 + 4x4 + ....................+ 99x99 + 100x100

I = 1 x (2-1) + 2x (3-1) +.....+ 100x(101 -1)

I = (1 x 2 +2 x 3 + .... + 100 x101 ) - ( 1 + 2 + .... +100 )

Đặt I =                        P                                  -             Q

P x 3 = 1x2x3 + 2x3x3 + ..... + 100 x101 x3

P x 3 =1x2x(3-0) + 2x3x(4-1) +....+ 100 x101 x ( 102 - 99)

P x 3 = 1x2x3 + 2x3x4 - 1x2x3 +......+ 100 x101 x 102 -  99 x 100 x 101

P x 3 = 100 x 101 x 102 

P = 100 x101 x 34 = 343400 

Q = 1 + 2 + 3 + ..... + 100 ( Có 100 số )

Q = ( 100 + 1 ) x 100 : 2 = 5050 

P - Q = I = 343400 - 5050 = 338350 

Nể đấy nhá @@

2 tháng 10 2016

x1 = 13 ; x2 = 10 ; x3 = 7

=> x1.x2-x2.x3=13.10-10.7=130-70=60

6 tháng 12 2020

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Leftrightarrow2+\frac{x+4}{2000}+\frac{x+3}{2001}=2+\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Leftrightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2001}+1\right)\)

\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

Mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)

Suy ra x+2004=0

\(\Leftrightarrow x=-2004\)

11 tháng 6 2016

Bỏ x4 đi nhé bn

Theo t/c dãy tỉ số=nhau:

\(\frac{x_1-1}{3}=\frac{x_2-2}{2}=\frac{x_3-3}{1}=\frac{x_1-1+x_2-2+x_3-3}{3+2+1}\)\(=\frac{\left(x_1+x_2+x_3\right)-\left(1+2+3\right)}{6}=\frac{30-6}{6}=\frac{24}{6}=4\)

=>x1-1=4.3=12=>x1=13

x2-2=4.2=8=>x2=10

x3-3=4=>x3=7

 

 

11 tháng 6 2016

Uk mik cảm ơn trong lúc chờ bạn thì mik giải được rồi nhưng dù sao cũng cảm ơn

 

24 tháng 12 2018

Bài 2 : phân tích các đa thức sau thành nhân tử

a, x3 - 2x2 + x

\(=x\left(x^2-2x+1\right)\)

\(=x\left(x-1\right)^2\)

b, x2 - 2x - y2 + 1

\(=x^2-2x+1-y^2\)

\(=\left(x-1\right)^2-y^2\)

\(=\left(x-1-y\right)\left(x-1+y\right)\)

24 tháng 12 2018

vt mũ hộ mk đuy bạn :

\(x^3-2x^2+x\)

\(=x^3-x^2-x^2+x\)

\(=\left(x^3-x^2\right)-\left(x^2-x\right)\)

\(=x^2\left(x-1\right)-x\left(x-1\right)\)

\(=\left(x^2-x\right)\left(x-1\right)\)

\(b,x^2-2x-y^2+1\)

\(=\left(x^2-2x+1\right)-y^2\)

\(=\left(x-1\right)^2-y^2\)

\(=\left(x-1+y\right)\left(x-1-y\right)\)