Biết a,,b,c là độ dài ba cạnh của một tam giác và 0 nhỏ hơn hoặc bằng t nhỏ hơn hoặc bằng 1 chứng minh rằng :
\(\sqrt{\frac{a}{b+c-a}}+\sqrt{\frac{b}{c+a-b}}+\sqrt{\frac{c}{a+b-c}}\)lớn hơn hoặc bằng \(2\sqrt{t+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét hiệu: $a^2+b^2+c^2-(ab+bc+ac)=\frac{2a^2+2b^2+2c^2-2(ab+bc+ac)}{2}=\frac{(a^2+b^2-2ab)+(b^2+c^2-2bc)+(c^2+a^2-2ac)}{2}=\frac{(a-b)^2+(b-c)^2+(c-a)^2}{2}\geq 0$ với mọi $a,b,c>0$
$\Rightarrow a^2+b^2+c^2\geq ab+bc+ac(1)$
Lại có:
Do $a,b,c$ là độ dài 3 cạnh tam giác nên theo BĐT tam giác ta có:
$a< b+c$
$\Rightarrow a^2< a(b+c)$
Tương tự: $b^2< b(a+c); c^2< c(a+b)$
Cộng theo vế các BĐT trên: $a^2+b^2+c^2< a(b+c)+b(a+c)+c(a+b)=2(ab+bc+ac)(2)$
Từ $(1); (2)$ ta có đpcm.
\(S=\frac{\sqrt{a-2}}{a}+\frac{\sqrt{b-6}}{b}+\frac{\sqrt{c-12}}{c}=\frac{\sqrt{2\left(a-2\right)}}{\sqrt{2}a}+\frac{\sqrt{6\left(b-6\right)}}{\sqrt{6}b}+\frac{\sqrt{12\left(c-12\right)}}{\sqrt{12}c}\)
\(\le\frac{\frac{2+a-2}{2}}{\sqrt{2}a}+\frac{\frac{6+b-6}{2}}{\sqrt{6}b}+\frac{\frac{12+c-12}{2}}{\sqrt{12}c}=\frac{a}{2\sqrt{2}a}+\frac{b}{2\sqrt{6}b}+\frac{c}{2\sqrt{12c}}\)(AM-GM)
\(=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{6}}+\frac{1}{2\sqrt{12}}\)
Dấu "=" xảy ra \(\Leftrightarrow a=4;b=12;c=24\)
Đặt \(\hept{\begin{cases}x=b+c-a\\y=a+c-b\\z=a+b-c\end{cases}}\left(x;y;z>0\right)\).Ta có:
\(x+y=b+c-a+a+c-b=2c\Rightarrow c=\frac{x+y}{2}\)
\(y+z=a+c-b+a+b-c=2a\Rightarrow a=\frac{y+z}{2}\)
\(z+x=a+b-c+b+c-a=2b\Rightarrow b=\frac{z+x}{2}\)
Do đó: \(A=\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\)
\(\Leftrightarrow2A=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)\ge6\) (BĐT AM-GM)
\(\Rightarrow A\ge\frac{6}{2}=3\).Dấu "=" khi a=b=c
a)Áp dụng BĐT AM-GM ta có
\(\frac{ab\sqrt{ab}}{a+b}\le\frac{ab\sqrt{ab}}{2\sqrt{ab}}=\frac{ab}{2}\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\frac{bc\sqrt{bc}}{b+c}\le\frac{bc}{2};\frac{ac\sqrt{ac}}{a+c}\le\frac{ac}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT=Σ\frac{ab\sqrt{ab}}{a+b}\le\frac{ab+bc+ca}{2}=VP\)
Khi \(a=b=c\)
b)Áp dụng tiếp AM-GM:
\(b\sqrt{a-1}\le\frac{b\left(a-1+1\right)}{2}=\frac{ab}{2}\)
\(a\sqrt{b-1}\le\frac{a\left(b-1+1\right)}{2}=\frac{ab}{2}\)
Cộng theo vế 2 BĐT trên ta có:
\(VT=b\sqrt{a-1}+a\sqrt{b-1}\le ab=VP\)
Khi \(a=b=1\)