a) (1-\(\frac{52}{53}\)) +(\(\frac{105}{106}\)-1) + (\(\frac{158}{159}\)-1) = \(\frac{\left|x\right|}{318}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\frac{52}{53}\right)+\left(\frac{105}{106}-1\right)+\left(\frac{158}{159}-1\right)=\frac{\left|x\right|}{318}\)
⇔\(\frac{1}{53}+\frac{-1}{106}+\frac{-1}{159}=\frac{\left|x\right|}{318}\)
⇔\(\frac{1}{138}=\frac{\left|x\right|}{318}\)
⇒\(\left|x\right|=1\)
⇔\(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy x∈\(\left\{-1;1\right\}\)
1/53+-1/106+-1/159=|x|/318
6/318+-3/318+-2/318=|x|/318
1/318=|x|/318
=>|x|=1
x=1 hoặc x=-1
=> \(\frac{1}{53}\)+ \(\frac{-1}{106}\)+\(\frac{-1}{159}\)= \(\frac{\left|x\right|}{318}\)
=> \(\frac{1}{318}\)= \(\frac{\left|x\right|}{318}\)
=> x thuộc {1; -1}
\(\left(1-\frac{52}{53}\right)+\left(\frac{105}{106}-1\right)+\left(\frac{158}{159}-1\right)=\frac{\left|x\right|}{318}\)
\(\Rightarrow\frac{1}{53}+\frac{-1}{106}+\frac{-1}{159}=\frac{\left|x\right|}{318}\)
\(\Rightarrow\frac{1}{318}=\frac{\left|x\right|}{318}\)
\(\Rightarrow\left|x\right|=1\)
\(\Rightarrow x=\pm1\)
Vậy..............................
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{2-1}{1.2}+\frac{4-3}{3.4}+\frac{6-5}{5.6}+...+\frac{100-99}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}=\left(\frac{1}{1}+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(\frac{1}{1}+\frac{1}{3}+...+\frac{1}{99}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
=> \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}=\frac{1}{1.2}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
=> A = 1
Ta có: \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)(đpcm)
Số chia rút gọn thành 1/51+1/52+...+1/99+1/100
=> biểu thức bằng 1