Tìm a, b để \(P\left(x\right)=ax^3+bx^3+5x-50\) chia hết cho \(x^2+3x-10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình sẽ làm cách chia nha còn bạn mún cách nào thì bảo mình làm lại
a)
Để \(x^3+ax+b\)chia hết cho \(x^2+2x-2\)
\(\Leftrightarrow\hept{\begin{cases}a+2+4=0\\b-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-6\\b=4\end{cases}}}\)
Vậy \(\hept{\begin{cases}a=-6\\b=4\end{cases}}\)để \(x^3+ax+b\)chia hết cho \(x^2+2x-2\)
b) dùng phương pháp xét giá trị riêng
Đặt \(f\left(x\right)=ax^3+bx^2+5x-50\)
Ta có: \(f\left(x\right)\)chia hết cho\(x^2+3x-10\)
\(\Rightarrow f\left(x\right)=\left(x^2+3x-10\right).q\left(x\right)\)
\(\Rightarrow f\left(2\right)=\left(2^2+2.3-10\right).q\left(2\right)\)
\(=0\)
\(\Leftrightarrow a.2^3+b.2^2+5.2-50=0\)
\(\Leftrightarrow8a+4b-40=0\)
\(\Leftrightarrow4\left(2a+b-10\right)=0\)
\(\Leftrightarrow2a+b=10\left(1\right)\)
Lai có : \(f\left(-5\right)=\left[\left(-5\right)^2+3.\left(-5\right)-10\right].q\left(-5\right)\)
\(=0\)
\(\Leftrightarrow a.\left(-5\right)^3+b.\left(-5\right)^2+5.\left(-5\right)-50=0\)
\(\Leftrightarrow-125a+25b-25-50=0\)
\(\Leftrightarrow-125a+25b-75=0\)
\(\Leftrightarrow25\left(-5a+b-3\right)=0\)
\(\Leftrightarrow-5a+b=3\left(2\right)\)
Lấy (1) trừ (2) ta được: \(\left(2a+b\right)-\left(-5a+b\right)=10-3\)
\(\Leftrightarrow7a=7\)
\(\Leftrightarrow a=1\)
Thay a=1 vào (1 ) ta được: b=8
Vậy a=1 và b=8
Ta có : \(x^2+3x-10=x^2+5x-2x-10=x\left(x+5\right)-2\left(x+5\right)=\left(x-2\right)\left(x+5\right)\)
Vì \(\left(ax^3+bx^2+5x-50\right)⋮\left(x^2+3x-10\right)\) nên
\(\left(ax^3+bx^2+5x-50\right)=\left(x-2\right)\left(x+5\right)H\left(x\right)\)
\(\Rightarrow\hept{\begin{cases}2^3a+b.2^2+5.2-50=0\\-5^3a+b.\left(-5\right)^2+5.\left(-5\right)-50=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}8a+4b+10-50=0\\-125a+25b-25-50=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}8a+4b=40\\-125a+25b=75\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=1\\b=8\end{cases}}\)
Vậy \(a=1;b=8\)
ta thấy :g(x)=x2+3x-10=(x-2)(x+5)
suy ra g(x)có 2 nghiệm là x=2&x=-5.muốn f(x) chia hết cho g(x) thì f(x) cx phải chia hết cho (x-2)&(x+5).
\(\hept{\begin{cases}f\left(-2\right)=0\\f\left(5\right)=0\end{cases}}\)
suy ra \(\hept{\begin{cases}8a+4b-40=0\\-125a+25b-25=0\end{cases}}\)vậy a=1 ;b=8
\(a) x^4 + ax^2 + b \\
= x^4 + 2x^2 + b + ax^2 - 2x^2\\
= (x^2 + 1)^2 - x^2 + x^2(a + b)\\
= (x^2 + x + 1)(x^2 - x + 1) + x^2(a + b) \\
= (x^2 + x + 1)(x^2 - x + 1) + (a + b)(x^2 + x + 1) - (a + b)(x - 1).
\)
Để \(x^4 + ax^2 + b\) chia hết cho \(x^2 + x + 1\) thì số dư bằng 0
\(\Rightarrow\left(a-1\right)\left(b-1\right)=0\\
\Rightarrow a=b=1\)
\(b) ax^3 + bx^2 + 5x - 50\\
= (x^2 + 3x - 10)(cx + d) \\
= ax^3 + bx^2 + 5x - 50\\
= cx^3 + (d + 3c)x^2 + (3d - 10c)x - 10d \\\)
Mà: \(a = c\)
\(b = d + 3c\\
5 = 3d - 10c\\
-50 = -10d\)
Vậy \(a = 1, b = 8\)
\(d)f(x)=ax^3+bx-24\)
Để f(x) chia hết cho (x + 1)(x + 3) thì f(-1)=0 và f(-3) = 0
f(-1)=0 => -a - b - 24 = 0 (*)
f(-3) = 0 => - 27a - 3b - 24 =0 (**)
Từ (*) và (**) ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a-b-24=0\\-27a-3b-24=0\end{matrix}\right.\)
Giải ra ta được a = 2; b = -26
Tương tự như cách giải vừa nãy, ta có:
\(P\left(x\right)=ax^3+bx^2+5x-50=Q\left(x\right).\left(x-2\right)\left(x+5\right)\)
Thay lần lượt \(x=2,x=-5\)(để vế phải = 0), ta được:
\(\hept{\begin{cases}a.2^3+b.2^2+5.2-50=0\\a.\left(-5\right)^3+b.\left(-5\right)^2+5.\left(-5\right)-50=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}8a+4b+10-50=0\\-125a+25b-25-50=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}8a+4b=40\\-125a+25b=75\end{cases}}\Rightarrow\hept{\begin{cases}2a+b=10\\-5a+b=3\end{cases}\Rightarrow\hept{\begin{cases}2a+b-\left(-5a-b\right)=10-3\\-5a+b=3\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}7a=7\\-5a+b=3\end{cases}\Rightarrow\hept{\begin{cases}a=1\\-5+b=3\end{cases}\Rightarrow}\hept{\begin{cases}a=1\\b=8\end{cases}}}\)
Vậy \(a=1,b=8\)