K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2018

Tương tự như cách giải vừa nãy, ta có:  

\(P\left(x\right)=ax^3+bx^2+5x-50=Q\left(x\right).\left(x-2\right)\left(x+5\right)\)

  Thay lần lượt  \(x=2,x=-5\)(để vế phải = 0), ta được: 

\(\hept{\begin{cases}a.2^3+b.2^2+5.2-50=0\\a.\left(-5\right)^3+b.\left(-5\right)^2+5.\left(-5\right)-50=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}8a+4b+10-50=0\\-125a+25b-25-50=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}8a+4b=40\\-125a+25b=75\end{cases}}\Rightarrow\hept{\begin{cases}2a+b=10\\-5a+b=3\end{cases}\Rightarrow\hept{\begin{cases}2a+b-\left(-5a-b\right)=10-3\\-5a+b=3\end{cases}}}\) 

\(\Rightarrow\hept{\begin{cases}7a=7\\-5a+b=3\end{cases}\Rightarrow\hept{\begin{cases}a=1\\-5+b=3\end{cases}\Rightarrow}\hept{\begin{cases}a=1\\b=8\end{cases}}}\)

Vậy \(a=1,b=8\)

17 tháng 8 2019

Mình sẽ làm cách chia nha còn bạn mún cách nào thì bảo mình làm lại 

a)

  x^3 +ax+b x^2+2x-2 x-2 x^3+2x^2-2x - -2x^2+(a+2)x+b -2x^2-4x+4 - (a+2+4)x+(b-4)

Để \(x^3+ax+b\)chia hết cho \(x^2+2x-2\)

\(\Leftrightarrow\hept{\begin{cases}a+2+4=0\\b-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-6\\b=4\end{cases}}}\)

Vậy \(\hept{\begin{cases}a=-6\\b=4\end{cases}}\)để \(x^3+ax+b\)chia hết cho \(x^2+2x-2\)

17 tháng 8 2019

b) dùng phương pháp xét giá trị riêng

Đặt \(f\left(x\right)=ax^3+bx^2+5x-50\)

Ta có: \(f\left(x\right)\)chia hết cho\(x^2+3x-10\)

\(\Rightarrow f\left(x\right)=\left(x^2+3x-10\right).q\left(x\right)\)

\(\Rightarrow f\left(2\right)=\left(2^2+2.3-10\right).q\left(2\right)\)

                 \(=0\)

\(\Leftrightarrow a.2^3+b.2^2+5.2-50=0\)

\(\Leftrightarrow8a+4b-40=0\)

\(\Leftrightarrow4\left(2a+b-10\right)=0\)

\(\Leftrightarrow2a+b=10\left(1\right)\)

Lai có : \(f\left(-5\right)=\left[\left(-5\right)^2+3.\left(-5\right)-10\right].q\left(-5\right)\)

                             \(=0\)

\(\Leftrightarrow a.\left(-5\right)^3+b.\left(-5\right)^2+5.\left(-5\right)-50=0\)

\(\Leftrightarrow-125a+25b-25-50=0\)

\(\Leftrightarrow-125a+25b-75=0\)

\(\Leftrightarrow25\left(-5a+b-3\right)=0\)

\(\Leftrightarrow-5a+b=3\left(2\right)\)

Lấy (1) trừ (2) ta được: \(\left(2a+b\right)-\left(-5a+b\right)=10-3\)

                                 \(\Leftrightarrow7a=7\)

                                 \(\Leftrightarrow a=1\)

Thay a=1 vào (1 ) ta được: b=8

Vậy a=1 và b=8

26 tháng 8 2017

Ta có : \(x^2+3x-10=x^2+5x-2x-10=x\left(x+5\right)-2\left(x+5\right)=\left(x-2\right)\left(x+5\right)\)

Vì \(\left(ax^3+bx^2+5x-50\right)⋮\left(x^2+3x-10\right)\) nên

 \(\left(ax^3+bx^2+5x-50\right)=\left(x-2\right)\left(x+5\right)H\left(x\right)\)

\(\Rightarrow\hept{\begin{cases}2^3a+b.2^2+5.2-50=0\\-5^3a+b.\left(-5\right)^2+5.\left(-5\right)-50=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}8a+4b+10-50=0\\-125a+25b-25-50=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}8a+4b=40\\-125a+25b=75\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=1\\b=8\end{cases}}\)

Vậy \(a=1;b=8\)

4 tháng 12 2017

ta thấy :g(x)=x2+3x-10=(x-2)(x+5)

suy ra g(x)có 2 nghiệm là x=2&x=-5.muốn f(x) chia hết cho g(x) thì f(x) cx phải chia hết cho (x-2)&(x+5).

\(\hept{\begin{cases}f\left(-2\right)=0\\f\left(5\right)=0\end{cases}}\)

suy ra \(\hept{\begin{cases}8a+4b-40=0\\-125a+25b-25=0\end{cases}}\)vậy a=1 ;b=8

13 tháng 10 2019

giúp em vs

18 tháng 7 2019

\(a) x^4 + ax^2 + b \\ = x^4 + 2x^2 + b + ax^2 - 2x^2\\ = (x^2 + 1)^2 - x^2 + x^2(a + b)\\ = (x^2 + x + 1)(x^2 - x + 1) + x^2(a + b) \\ = (x^2 + x + 1)(x^2 - x + 1) + (a + b)(x^2 + x + 1) - (a + b)(x - 1). \)
Để \(x^4 + ax^2 + b\) chia hết cho \(x^2 + x + 1\) thì số dư bằng 0

\(\Rightarrow\left(a-1\right)\left(b-1\right)=0\\ \Rightarrow a=b=1\)
\(b) ax^3 + bx^2 + 5x - 50\\ = (x^2 + 3x - 10)(cx + d) \\ = ax^3 + bx^2 + 5x - 50\\ = cx^3 + (d + 3c)x^2 + (3d - 10c)x - 10d \\\)
Mà: \(a = c\)

\(b = d + 3c\\ 5 = 3d - 10c\\ -50 = -10d\)
Vậy \(a = 1, b = 8\)

\(d)f(x)=ax^3+bx-24\)

Để f(x) chia hết cho (x + 1)(x + 3) thì f(-1)=0 và f(-3) = 0
f(-1)=0 => -a - b - 24 = 0 (*)

f(-3) = 0 => - 27a - 3b - 24 =0 (**)
Từ (*) và (**) ta có hệ phương trình:

\(\left\{{}\begin{matrix}-a-b-24=0\\-27a-3b-24=0\end{matrix}\right.\)

Giải ra ta được a = 2; b = -26