Cho tam giác ABC trung tuyến BD Trên tia đối BD lấy điểm M sao cho MC = dB trung tuyến CE trên tia đốiEC lấy điểm N sao cho NE= NC
1: CM AN=AM
2:CM A,N,M thẳng hàng
3: A trung điểm MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tam giác DBC và tam giác DMA có :
DA = DC (gt)
góc ADM = góc BDC (dối đỉnh)
BD =DM (gt)
=>tg DBC= tg DMA(c.g.c)
=> MA= BC( 2 cạnh tương ứng) (1)
Xét tg ENA và tg ECB có:
EA = EB (gt)
góc NEA = góc CEB(đối đỉnh)
EN= EC (gt)
=> tg ENA= tg ECB (c.g.c)
=> NA= BC (2 cạnh tương ứng) (2)
và A là trung nằm giữa M và N
Từ (1) và (2)=> MA= NA
=> A là trung điểm của đoạn MN.
1.gọi giao của BD và CE là O
ta có: OB=2/3 BD=> OB=2/3 x 9=6
ta có: OC=2/3 EC=> OC=2/3 x12=8
ta có:\(OC^2+OB^2=6^2+8^2=36+64=100\)
\(BC^2=10^2=100\)
=> tam giác OBC vuông tại O=> BD_|_CE tại O
1.gọi giao của BD và CE là O
ta có: OB=2/3 BD=> OB=2/3 x 9=6
ta có: OC=2/3 EC=> OC=2/3 x12=8
ta có:$OC^2+OB^2=6^2+8^2=36+64=100$OC2+OB2=62+82=36+64=100
$BC^2=10^2=100$BC2=102=100
=> tam giác OBC vuông tại O=> BD_|_CE tại O
Gọi I là trung điểm của BC, hiển nhiên A, I, G thẳng hàng ! AI là trung tuyến của tg ABC! Vì BD = CE nên CG=BG (=2/3 CE). Tạm giác BGC cân tại G, nên GI vuông góc với BC hay nói cách khác AI vuông góc BC : tạm giác ABC phải là tg cân tại A! Đpcm AG là phân giác góc A! 2/ EG=NG nên N là trung điểm CG( tính chất trung tuyến CG=2 GE)! Tương tự M là trung điểm AG! Vay thì GD , CM, AN là 3 trung tuyến của tam giác AGC, đồng quy! Mà GD cũng là BD!!!!