bài 1 : Chứng tỏ rằng :
a ) \(2+2^2+2^3⋮7\)
b ) \(3^{100}+3^{101}+3^{102}⋮13\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy: 1/2^2<1/1.2
1/3^2<1/2.3
1/4^2<1/3.4
…………...
1/100^2<1/99.100
=>A<1/1.2+1/2.3+1/3.4+…+1/99.100=99/100
Mà 99/100<1 => 1/22 + 1/32 + 1/42 + ... + 1/1002<1
b)Ta thấy : 1/101+1/102+1/103+…+1/150>1/150+1/150+1/150+…+1/150(50 số hạng)
=>A>50/150>1/3 (1)
Ta thấy : 1/101+1/102+1/103+…+1/150<1/100+1/100+1/100+…+1/100(50 số hạng)
=>A<1/2 (2)
Từ (1) và (2) =>1/3<A<1/2
c) Ta thấy : 1/11 + 1/12 + 1/13 + ... + 1/20>1/20+1/20+1/20+…+1/20(10 số hạng)
=>1/11 + 1/12 + 1/13 + ... + 1/20>1/2
Bài 1:
C = 1/101 + 1/102 + 1/103 + ... + 1/200
Có:
C < 1/101 + 1/101 + 1/101 + ... + 1/101
C < 100 . 1/101
C < 100/101
Mà 100/101 < 1
=> C < 1 (1)
Có:
C > 1/200 + 1/200 + 1/200 + ... + 1/200
C > 100 . 1/200
C > 1/2 (2)
Từ (1) và (2)
=> 1/2<C<1
Ủng hộ nha mk làm tiếp
Đây là chút lí thuyết về c/s tận cùng của 1 lũy thừa cơ số 3:
+, 3^4k = ...1
+, 3^(4k+1) = ....3
+, 3^(4k+2)=....9
+, 3^(4k+3) = ....7
Một số cphương thì ko có tận cùng là 2,3,7,8
Suy ra ta phân tích A như sau:
A = (1+3^4+...+3^100)+(3+3^5+...+3^101)+(3^2+3^6+...+3^102)+(3^3+...+3^99)
Suy ra c/s tận cùng của A chính là c/s tận cùng của:
1.101+3.101+9.101+7.100=2013
Suy ra A có c/s tận cùng là 3
Suy ra A ko phải số cphương
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)( đpcm )
2:
a: A=1+2+2^2+2^3+2^4
=>2A=2+2^2+2^3+2^4+2^5
=>A=2^5-1
=>A=B
b: C=3+3^2+...+3^100
=>3C=3^2+3^3+...+3^101
=>2C=3^101-3
=>\(C=\dfrac{3^{101}-3}{2}\)
=>C=D
Ta có:
\(\left\{\begin{matrix}5^{27}=\left(5^3\right)^9=125^9\\2^{63}=\left(2^7\right)^9=128^9\end{matrix}\right\}\Rightarrow5^{27}< 2^{63}\left(1\right)\)
\(\left\{\begin{matrix}2^{63}=\left(2^9\right)^7=512^7\\5^{28}=\left(5^4\right)^7=625^7\end{matrix}\right\}\Rightarrow2^{63}< 5^{28}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow5^{27}< 2^{63}< 5^{28}\) (đpcm)
\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{10^2}\)
\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\)
\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)
\(D< 1-\dfrac{1}{10}\Leftrightarrow D< 1\left(đpcm\right)\)
a) \(2\cdot\left(1+2+2^2\right)=2\cdot7⋮7\left(đpcm\right)\)
b) \(3\cdot\left(1+3+3^2\right)=3\cdot13⋮13\left(đpcm\right)\)
Bài 1 : Chứng tỏ rằng :
a) 2 + 2^2 + 2^3
= 2 . 1 + 2^1 . 2^1 + 2^1 . 2^2
= 2 . 1 + 2 . 2 + 2 . 4
= 2 . ( 1 + 2 + 4 )
= 2 . 7 chia hết cho 7 .
Vậy 2 + 2^2 + 2^3 chia hết cho 7
b) 3^100 + 3^101 + 3^102
= 3^100 . 1 + 3^100 . 3^1 + 3^100 . 3^2
= 3^100 . 1 + 3^100 . 3 + 3^100 . 9
= 3^100 . ( 1 + 3 + 9 )
= 3^100 . ( 4 + 9 )
= 3^100 . 13 chia hết cho 13
Vậy 3^100 + 3^101 + 3^102 chia hết cho 13 .