K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2018

a) \(2\cdot\left(1+2+2^2\right)=2\cdot7⋮7\left(đpcm\right)\)

b) \(3\cdot\left(1+3+3^2\right)=3\cdot13⋮13\left(đpcm\right)\)

7 tháng 8 2018

Bài 1 : Chứng tỏ rằng : 

a) 2 + 2^2 + 2^3 

= 2 . 1 + 2^1 . 2^1 + 2^1 . 2^2

= 2 . 1 + 2 . 2 + 2  . 4 

= 2 . ( 1 + 2 + 4 )

= 2 .  7 chia hết cho 7 . 

Vậy 2 + 2^2 + 2^3 chia hết cho 7

b) 3^100 + 3^101 + 3^102

= 3^100 . 1 + 3^100 . 3^1 + 3^100 . 3^2 

= 3^100 . 1  + 3^100 . 3 + 3^100 . 9 

= 3^100 . ( 1 + 3 + 9 )

= 3^100 . ( 4 + 9 )

= 3^100 . 13 chia hết cho 13

Vậy  3^100 + 3^101 + 3^102 chia hết cho 13 .

6 tháng 5 2016

a) Ta thấy: 1/2^2<1/1.2

              1/3^2<1/2.3

              1/4^2<1/3.4

              …………...

              1/100^2<1/99.100

=>A<1/1.2+1/2.3+1/3.4+…+1/99.100=99/100

Mà 99/100<1 =>  1/2+ 1/32 + 1/4+ ... + 1/1002<1

b)Ta thấy : 1/101+1/102+1/103+…+1/150>1/150+1/150+1/150+…+1/150(50 số hạng)

 =>A>50/150>1/3 (1)

 Ta thấy : 1/101+1/102+1/103+…+1/150<1/100+1/100+1/100+…+1/100(50 số hạng)

=>A<1/2 (2)

Từ (1) và (2) =>1/3<A<1/2

c) Ta thấy :  1/11 + 1/12 + 1/13 + ... + 1/20>1/20+1/20+1/20+…+1/20(10 số hạng)

=>1/11 + 1/12 + 1/13 + ... + 1/20>1/2

12 tháng 8 2016

Bài 1:

C = 1/101 + 1/102 + 1/103 + ... + 1/200

Có:

C < 1/101 + 1/101 + 1/101 + ... + 1/101

C < 100 . 1/101

C < 100/101

Mà 100/101 < 1

=> C < 1 (1)

Có:

C > 1/200 + 1/200 + 1/200 + ... + 1/200

C > 100 . 1/200

C > 1/2 (2)

Từ (1) và (2)

=> 1/2<C<1

Ủng hộ nha mk làm tiếp

8 tháng 5 2016

Đây là chút lí thuyết về c/s tận cùng của 1 lũy thừa cơ số 3:

+, 3^4k = ...1

+, 3^(4k+1) = ....3

+, 3^(4k+2)=....9

+, 3^(4k+3) = ....7

Một số cphương thì ko có tận cùng là 2,3,7,8

Suy ra ta phân tích A như sau:

A = (1+3^4+...+3^100)+(3+3^5+...+3^101)+(3^2+3^6+...+3^102)+(3^3+...+3^99)

Suy ra c/s tận cùng của A chính là c/s tận cùng của:

1.101+3.101+9.101+7.100=2013

Suy ra A có c/s tận cùng là 3 

Suy ra A ko phải số cphương

29 tháng 7 2017

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)( đpcm )

2:

a: A=1+2+2^2+2^3+2^4

=>2A=2+2^2+2^3+2^4+2^5

=>A=2^5-1

=>A=B

b: C=3+3^2+...+3^100

=>3C=3^2+3^3+...+3^101

=>2C=3^101-3

=>\(C=\dfrac{3^{101}-3}{2}\)

=>C=D

21 tháng 8 2023

Ta có: 

\(\left\{\begin{matrix}5^{27}=\left(5^3\right)^9=125^9\\2^{63}=\left(2^7\right)^9=128^9\end{matrix}\right\}\Rightarrow5^{27}< 2^{63}\left(1\right)\)

\(\left\{\begin{matrix}2^{63}=\left(2^9\right)^7=512^7\\5^{28}=\left(5^4\right)^7=625^7\end{matrix}\right\}\Rightarrow2^{63}< 5^{28}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow5^{27}< 2^{63}< 5^{28}\) (đpcm)

20 tháng 6 2017

\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{10^2}\)

\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\)

\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)

\(D< 1-\dfrac{1}{10}\Leftrightarrow D< 1\left(đpcm\right)\)