K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)

b) Xét ΔDHB vuông tại D và ΔEHC vuông tại E có

HB=HC(ΔAHB=ΔAHC)

\(\widehat{DBH}=\widehat{ECH}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔDHB=ΔEHC(cạnh huyền-góc nhọn)

nên \(\widehat{DHB}=\widehat{EHC}\)(hai góc tương ứng)

mà \(\widehat{DHB}=\widehat{FHC}\)(hai góc đối đỉnh)

nên \(\widehat{EHC}=\widehat{FHC}\)

mà tia HC nằm giữa hai tia HE,HF

nên HC là tia phân giác của \(\widehat{EHF}\)(đpcm)

3 tháng 2 2021

cảm ơn

10 tháng 2 2022

b1 

a) CM tam giác chứaHB và chứa HC = nhau

b) CM tam giác chứa 2 góc A = nhau

a: Xet ΔCBD có

CA vừa là đường cao, vừa là trung tuyến

=>ΔCBD cân tại C

=>CA là phân giác củagóc BCD

b: Xét ΔCEI vuông tại E và ΔCFI vuông tại F có

CI chung

góc ECI=góc FCI

=>ΔCEI=ΔCFI

=>CE=CF

=>ΔCEF cân tạiC

Xet ΔCDB có CE/CD=CF/CB

nên EF//DB

c: IE=IF

IF<IB

=>IE<IB

6 tháng 2 2020

A B C M N I H

có góc MAB = góc NAC = 90 

góc MAB + gpcs BAC  = góc MAC 

góc NAC + góc BAC = góc BAN 

=> góc MAC = góc BAN

xét tam giác MAC và tam giác BAN có : 

MA = MB do tam giác MAB cân tại A (gt)

AN = AC do tam giác ANC cân tại A (gt)

=> tam giác MAC = tam giác BAN (c-g-c)

b, gọi MC cắt BA tại I  và  MC cắt BN tại E

xét tam giác MIA vuông tại A => góc AMI + góc MIA = 90

có góc AMI = góc  IBE do tam giác MAC = tam giác BAN (Câu a)

góc MIA = góc BIE (đối đỉnh)

=> góc BIE + góc IBE = 90 

=> tam giác BIE vuông tại E 

=> MC _|_ BN

c, 

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BACb) Chứng minh AM=ANc) Chứng minh AI vuông góc với BC  Bài 2 : Cho tam giác vuông tại A có góc C=30 độa) Tính góc Bb) Vẽ tia phân giác của góc B cắt AC tại Dc) Trên cạnh BC lấy điểm M sao cho BM =AB...
Đọc tiếp

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . 

a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC

b) Chứng minh AM=AN

c) Chứng minh AI vuông góc với BC

  Bài 2 : Cho tam giác vuông tại A có góc C=30 độ

a) Tính góc B

b) Vẽ tia phân giác của góc B cắt AC tại D

c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD

D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD

Tính góc AKB

  Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC

a) Chứng minh tam giác AKB=tam giác AKC

b) Chứng minh AK vuông góc với BC 

c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

1
21 tháng 1 2017

Bài 1:

a)+ Vì AB = ACNÊN

==>Tam giác ABC cân tại A

==>góc ABI = góc ACI

+ Xét tam giác ABI và tam giác ACI có:

               AI là cạch chung

               AB = AC(gt)

               BI = IC ( I là trung điểm của BC)

Vậy tam giác ABI = tam giác ACI (c.c.c)

==> góc BAI = góc CAI ( 2 góc tương ứng )

==>AI là tia phân giác của góc BAC

b)

Xét tam giác BAM và tam giác BAN có:

         AB = AC (gt)

        góc B = góc C (cmt)

         BM = CN ( gt )

    Vậy tam giác BAM = tam giác CAN (c.g.c)

==> AM = AN (2 cạnh tương ứng)

c)

vì tam giác BAI = tam giác CAI (cmt)

==>góc AIB = góc AIC (2 góc tương ứng) 

Mà góc AIB+ góc AIC = 180độ ( kề bù)

nên AIB=AIC=180:2=90

==>AI vuông góc với BC