K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2018

\(a.a\left(b+c\right)+3b+3c=a\left(b+c\right)+3\left(b+c\right)=\left(b+c\right)\left(a+3\right)\)

\(b.a\left(c-d\right)+c-d=\left(c-d\right)\left(a+1\right)\)

\(c.b\left(a-c\right)+5a-5c=b\left(a-c\right)+5\left(a-c\right)=\left(a-c\right)\left(b+5\right)\)

\(d.a\left(m-n\right)+m-n=\left(m-n\right)\left(a+1\right)\)

\(e.mx+my+5x+5y=m\left(x+y\right)+5\left(x+y\right)=\left(x+y\right)\left(m+5\right)\)

\(f.ma+mb-a-b=m\left(a+b\right)-\left(a+b\right)=\left(a+b\right)\left(m-1\right)\)

\(g.4x+by+4y+bx=4x+bx+by+4y=x\left(b+4\right)+y\left(b+4\right)=\left(b+4\right)\left(x+y\right)\)

\(h.1-ax-x+a=\left(a+1\right)-x\left(a+1\right)=\left(a+1\right)\left(1-x\right)\)

\(k.x^{m+2}-x^m=x^m\left(x^2-1\right)=x^m\left(x-1\right)\left(x+1\right)\)

\(m.\left(a-b\right)^2-\left(b-a\right)\left(a+b\right)=\left(b-a\right)^2-\left(b-a\right)\left(a+b\right)=\left(b-a\right)\left(b-a-a-b\right)=-2a\left(b-a\right)\)

\(n.a\left(a-b\right)\left(a+b\right)-\left(a^2-2ab+b^2\right)=a\left(a-b\right)\left(a+b\right)-\left(a-b\right)^2=\left(a-b\right)\left(a^2+ab-a+b\right)\)

12 tháng 4 2018

\(Ta có: \(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+2\left(b+c\right)}\) Theo Cauchy: \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) => \(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{\left(a+b\right)+\left(a+c\right)}+\frac{1}{2\left(b+c\right)}\right)\le\frac{1}{4}\left(\frac{1} {4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{1}{2\left(b+c\right)}\right)\) => \(\frac{1}{2a+3b+3c}\le\frac{1}{8}\left(\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(a+c\right)}+\frac{1}{b+c}\right)\) Tương tự: \(\frac{1}{3a+2b+3c}\le\frac{1}{8}\left(\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(b+c\right)}+\frac{1}{a+c}\right)\) Và: \(\frac{1}{3a+3b+2c}\le\frac{1}{8}\left(\frac{1}{2\left(a+c\right)}+\frac{1}{2\left(b+c\right)}+\frac{1}{a+b}\right)\) => \(P\le\frac{1}{8}\left(\frac{2}{a+b}+\frac{2}{a+c}+\frac{2}{b+c}\right)=\frac{1}{4}.2017\) => Pmax  = 2017:4=504,25\)

11 tháng 4 2018

Ta có: \(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+2\left(b+c\right)}\)

Theo Cauchy: \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

=> \(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{\left(a+b\right)+\left(a+c\right)}+\frac{1}{2\left(b+c\right)}\right)\le\frac{1}{4}\left(\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{1}{2\left(b+c\right)}\right)\)

=> \(\frac{1}{2a+3b+3c}\le\frac{1}{8}\left(\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(a+c\right)}+\frac{1}{b+c}\right)\)

Tương tự: \(\frac{1}{3a+2b+3c}\le\frac{1}{8}\left(\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(b+c\right)}+\frac{1}{a+c}\right)\)

Và: \(\frac{1}{3a+3b+2c}\le\frac{1}{8}\left(\frac{1}{2\left(a+c\right)}+\frac{1}{2\left(b+c\right)}+\frac{1}{a+b}\right)\)

=> \(P\le\frac{1}{8}\left(\frac{2}{a+b}+\frac{2}{a+c}+\frac{2}{b+c}\right)=\frac{1}{4}.2017\)

=> Pmax = 2017:4=504,25

`a, (2x-3)^3 = 8x^3 - 36x^2 + 54x - 27`

`b, (a+3b)^3 = a^3 + 9a^2b + 27ab^2 + 27b^3`

`c, (xy-1)^3 = x^3y^3 - 3x^2y^2 + 3xy -1`

4 tháng 9 2019

A(B+C)+3(B+C)=(B+C)(A+3)

4 tháng 9 2019

\(a\left(b+c\right)+3b+3c\)

\(\Rightarrow a\left(b+c\right)+3\left(b+c\right)\)

\(\Rightarrow\left(a+3\right)\left(b+c\right)\)

22 tháng 6 2019

Sai đề! Sửa: that 2c+b-a=2c+a-b

Đặt 2a+b-c=x, 2b+c-a=y, 2c+a-b=z

\(\Rightarrow8\left(a+b+c\right)^3=\left(x+y+z\right)^3=x^3+y^3+z^3\)và \(P=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Ta có: \(\left(x+y+z\right)^3-x^3-y^3-z^3=0\Leftrightarrow\left(x+y\right)^3+3\left(x+y\right)z\left(x+y+z\right)-x^3-y^3=0\)

\(\Leftrightarrow3xy\left(x+y\right)+3\left(x+y\right)z\left(x+y+z\right)=0\Leftrightarrow3\left(x+y\right)\left(xy+xz+yz+z^2\right)=0\)

\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\Leftrightarrow3P=0\Leftrightarrow P=0\)

8 tháng 1 2019

Bỏ ngoặc ra rồi tính bình thường

8 tháng 1 2019

bỏ ngoặc nha bn