7/10+7/10^2+...+7/10^99+7/10^100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{7}{10}+\frac{7}{10^2}+...+\frac{7}{10^{100}}\)
\(10A=7+\frac{7}{10}+...+\frac{7}{10^{99}}\)
\(\Rightarrow10A-A=9A=7-\frac{7}{10^{100}}\)
1+(-2)+3+(-4)+5+(-6)+7+(-8)+9+(-10)+11+(-12)
=(1+3+5+7+9+11)+[(-2)+(-4)+(-6)+(-8)+(-10)+(-12)]
= 36+-42
=-6
(-1)+2+(-3)+4+(-5)+6+(-7)+8+(-9)+10+(-11)+12
=[(-1)+(-3)+(-5)+(-7)+(-9)+(-11)]+(2+4+6+8+10+12)
=(-36)+42
=6
A=7.(1/10+1/10^2+.....+1/10^100)
10A=7.(10/10+10/10^2+....+10/10^100)
10A=7.(1+1/10+....+1/99) 9A=7.(ans-A) 9A=7.(1-1/100) 9A=7-7/100 A=(7-7100):9
mk doan la` de sai, sua: \(\frac{3^9-2^3.3^7+2^{10}.3^2-2^{13}}{3^{10}-2^2.3^7+2^{10}.3^3-2^{12}}\)
\(=\frac{3^7.\left(3^2-2^3\right)+2^{10}.\left(3^2-2^3\right)}{3^7.\left(3^3-2^2\right)+2^{10}.\left(3^3-2^2\right)}=\frac{3^7+2^{10}}{\left(3^7+2^{10}\right).24}=\frac{1}{24}\)
a) Số số hạng của B:
(99 - 1) : 2 + 1 = 50 (số)
B = (99 + 1) . 50 : 2 = 2500
b) Số số hạng của C:
(100 - 1) : 3 + 1 = 34 (số)
C = (100 + 1) . 34 : 2 = 1717
a,A=1 + ( -3) + 5 + ( -7 ) + ... + 17 + ( -19 )
A=( 1 - 3 ) + ( 5 - 7 ) + ...+ ( 17 +19 )
A= (-2 ) . 10
A= (-20)
b, B= 1-4+7-10 +... -100 + 103
B= 1+ ( -4 + 7 ) + ( -10 +13 ) +...+ (-100 +103 )
B= 1 + 3 + 3 +...+3
B= 1+3 .17
B= 52
c, C= 1 + 2 -3 -4+5+6-7-8+..-99-100+101+102
C= 1 + ( 2-3-4+5) +(6-7 -8+9)+...+(98-99-100+101)+102
C= 1 + 0 + 0 + 0 + 0 + ... + 0 + 102
C= 103
\(10A=7+\frac{7}{10}+\frac{7}{10^2}+...+\frac{7}{10^{99}}\)
\(10A-A=\left(7+\frac{7}{10}+...+\frac{7}{10^{99}}\right)-\left(\frac{7}{10}+\frac{7}{10^2}+...+\frac{7}{10^{100}}\right)\)
\(9A=7-\frac{7}{10^{100}}\)
\(A=\frac{7-\frac{7}{10^{100}}}{9}\)