tìm x
2+4+6+.......+x = 2010
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x+4}{2010}+\frac{x+3}{2011}=\frac{x+2}{2012}+\frac{x+1}{2013}\)
\(\Rightarrow\left(\frac{x+4}{2010}+1\right)+\left(\frac{x+3}{2011}+1\right)=\left(\frac{x+2}{2012}+1\right)+\left(\frac{x+1}{2013}+1\right)\)
\(\Rightarrow\left(x+2014\right)\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)
\(\Rightarrow x=-2014\)
Bài 6:
a2+b2=(a+b)2-2ab
<=> 2010 =36-2ab
<=>ab=-987
M=a3+b3
=(a+b)(a2-ab+b2)
=6(a2+987+b^2)
=6(2010+987)
=17982
(1+1+1+.............+1+1):50+2010-12xX=91
(1x50):50+2010-12xX
50:50+2010-12xX=91
1+2010-12xX=91
2011-12xX=91
12xX=2011-91
12xX=1920
x=1920:12
x=160
Bài \(1.\)
\(x^4+2010x^2+2009x+2010=\left(x^4-x\right)+\left(2010x^2+2010x+2010\right)\)
\(=x\left(x^3-1\right)+2010\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2010\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2010\right)\)
Bài \(2.\)
\(x^2-25=y\left(y+6\right)\)
\(\Leftrightarrow\) \(x^2-25+9=y^2+6y+9\)
\(\Leftrightarrow\) \(x^2-16=\left(y+3\right)^2\)
\(\Leftrightarrow\) \(x^2-\left(y+3\right)^2=16\)
\(\Leftrightarrow\) \(\left(x-y-3\right)\left(x+y+3\right)=16\)
Bạn xét từng trường hợp nhóe!
A = (-2)+4+(-6)+8+....+(-66)+68
= 2+2+....+2
= 2 X 17
= 34
A= 1-2+3-4+.....+2009-2010+2011
= -1+-1+.....+-1+2011
= -1 x 1005 + 2011
= -1005 + 2011
= 1006
Đúng thì tích nha?
Lời giải:
$A=3-3^2+3^3-3^4+....-3^{2010}+3^{2011}$
$3A=3^2-3^3+3^4-3^5+...-3^{2011}+3^{2012}$
$\Rightarrow A+3A=3^{2012}+3$
$\Rightarrow 4A=3^{2012}+3$
$\Rightarrow A=\frac{3^{2012}+3}{4}$
b.
Từ phần a suy ra $4A-3=3^{2012}$
Do đó để $4A-3=81^x$ thì $3^{2012}=81^x$
$\Rightarrow 81^{503}=81^x$
$\Rightarrow x=503$
c.
$A=3+(-3^2+3^3-3^4)+(3^5-3^6+3^7)+(-3^8+3^9-3^{10})+...+(3^{2009}-3^{2010}+3^{2011})$
$=3+3^2(-1+3-3^2)+3^5(1-3+3^2)+3^8(-1+3-3^2)+...+3^{2009}(1-3+3^2)$
$=3+3^2(-7)+3^5.7+3^8(-7)+...+3^{2009}(-7)$
$=3+7(-3^2+3^5-3^8+....+3^{2009})$
$\Rightarrow A$ chia 7 dư 3.
d.
$4A=3^{2012}+3$
Có: $3^2\equiv -1\pmod {10}$
$\Rightarrow 3^{2012}=(3^2)^{1006}\equiv 1\pmod {10}$
$\Rightarrow 3^{2012}+3\equiv 4\pmod {10}$
$\Rightarrow 4A$ có tận cùng là 4
$\Rightarrow A$ có tận cùng là 1.
Lời giải của mình ở đây nha bạn!
http://olm.vn/hoi-dap/question/424173.html
\(S=\left\{\frac{4023}{2};\frac{4015}{2}\right\}\)
x = 2010 - 1 x 2 + 2 =4020