Tìm x:
x2+\(\frac{2}{9}\)=\(\frac{5}{12}\)+\(\frac{1}{4}\)
Help me!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[2\frac{11}{25}-0,84.\left(6\frac{8}{9}:2\frac{7}{12}-\frac{5}{12}.4\frac{4}{35}\right)\right]:\left[7,605:7\frac{1}{2}+3,086\right]\\ < =>\left[\frac{61}{25}-\frac{21}{25}.\left(\frac{62}{9}:\frac{31}{12}-\frac{5}{12}.\frac{144}{35}\right)\right]:\left[7,605:7,5+3,086\right]\\ < =>\left[\frac{61}{25}-\frac{21}{25}.\left(\frac{8}{3}-\frac{12}{7}\right)\right]:\left[1,014+3,086\right]\\ < =>\left[\frac{61}{25}-\frac{21}{25}.\frac{20}{21}\right]:4,1\\ < =>\left[\frac{61}{25}-\frac{4}{5}\right]:4,1\\ < =>\frac{41}{25}:4,1=0,4\)
Em cần phải viết biểu thức trên bằng biểu thức dưới chứ không phải tương đương nhé.
c) G = \(\frac{636363.37-373737.63}{1+2+3+...+2017}\)
G = \(\frac{63.10101.37-37.10101.63}{1+2+3+...+2017}\)
G = \(\frac{0}{1+2+3+...+2017}\)
=> G = 0
Vậy G = 0
a) \(E=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{48.49.50}\)
\(\Rightarrow E=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{48.49.50}\right)\)
\(\Rightarrow E=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(\Rightarrow E=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{49.50}\right)\)
\(\Rightarrow E=\frac{1}{2}.\frac{612}{1225}\)
\(\Rightarrow E=\frac{306}{1225}\)
Vậy...
b) \(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}=\frac{5.2^{30}.3^{18}-2^2.3^{20}.2^{27}}{5.2^9.2^{19}.3^{19}-7.2^{29}.3^{18}}=\frac{5.2^{30}.3^{18}-2^{29}.3^{20}}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\)
\(=\frac{2^{29}.3^{18}\left(5.2-3^2\right)}{2^{28}.3^{18}\left(5.3-7.2\right)}=\frac{2.1}{1}=2\)
d) Bạn xem lại đề nhé
Dài đấy :))
a) \(\left|x-1\right|-\left(-2\right)^3=9\cdot\left(-1\right)^{100}\)
\(\Leftrightarrow\left|x-1\right|-\left(-8\right)=9\cdot1\)
\(\Leftrightarrow\left|x-1\right|+8=9\)
\(\Leftrightarrow\left|x-1\right|=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
b) \(\frac{x-2}{-4}=\frac{-9}{x-2}\)( ĐKXĐ : \(x\ne2\))
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)=-4\cdot\left(-9\right)\)
\(\Leftrightarrow\left(x-2\right)^2=36\)
\(\Leftrightarrow\left(x-2\right)^2=\left(\pm6\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=6\\x-2=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-4\end{cases}}\left(tmđk\right)\)
c) \(\frac{x-5}{3}=\frac{-12}{5-x}\)( ĐKXĐ : \(x\ne5\))
\(\Leftrightarrow\frac{x-5}{3}=\frac{-12}{-\left(x-5\right)}\)
\(\Leftrightarrow\frac{x-5}{3}=\frac{12}{x-5}\)
\(\Leftrightarrow\left(x-5\right)\left(x-5\right)=3\cdot12\)
\(\Leftrightarrow\left(x-5\right)^2=36\)
\(\Leftrightarrow\left(x-5\right)^2=\left(\pm6\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=6\\x-5=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=11\\x=-1\end{cases}}\left(tmđk\right)\)
d) \(8x-\left|4x+\frac{3}{4}\right|=x+2\)
\(\Leftrightarrow8x-x-2=\left|4x+\frac{3}{4}\right|\)
\(\Leftrightarrow7x-2=\left|4x+\frac{3}{4}\right|\)(*)
\(\left|4x+\frac{3}{4}\right|\ge0\Leftrightarrow4x+\frac{3}{4}\ge0\Leftrightarrow x\ge-\frac{3}{16}\)
Vậy ta xét hai trường hợp sau :
1. \(x\ge-\frac{3}{16}\)
(*) <=>\(7x-2=4x+\frac{3}{4}\)
\(\Leftrightarrow7x-4x=\frac{3}{4}+2\)
\(\Leftrightarrow3x=\frac{11}{4}\)
\(\Leftrightarrow x=\frac{11}{12}\)(tmđk)
2. \(x< -\frac{3}{16}\)
(*) <=> \(7x-2=-\left(4x+\frac{3}{4}\right)\)
\(\Leftrightarrow7x-2=-4x-\frac{3}{4}\)
\(\Leftrightarrow7x+4x=-\frac{3}{4}+2\)
\(\Leftrightarrow11x=\frac{5}{4}\)
\(\Leftrightarrow x=\frac{5}{44}\left(ktmđk\right)\)
Vậy x = 11/12
e) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)
\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2020}\)
\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{4040}\)
\(\Leftrightarrow x+1=4040\)
\(\Leftrightarrow x=4039\)
\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}.\frac{5}{12}.....\frac{30}{62}.\frac{31}{64}=4^x\)
\(\Leftrightarrow\)\(\frac{1.2.3.4.5.....30.31}{4.6.8.10.12.....62.64}=4^x\)
\(\Leftrightarrow\)\(\frac{2.3.4.5.....30.31}{2\left(2.3.4.5.....30.31\right).64}=4^x\)
\(\Leftrightarrow\)\(\frac{1}{128}=4^x\)
\(\Leftrightarrow\)\(2^{2x}=2^{-7}\) ( trong sgk có phần đọc thêm nói về cái này nhé )
\(\Leftrightarrow\)\(2x=-7\)
\(\Leftrightarrow\)\(x=\frac{-7}{2}\)
Vậy \(x=\frac{-7}{2}\)
Chúc bạn học tốt ~
\(x=\frac{2}{3}\)nhan
\(x^2+\frac{2}{9}=\frac{2}{3}\)
\(x^2=\frac{4}{9}\)
\(x^2=\left(\frac{2}{3}\right)^2\)
\(\Rightarrow x=\frac{2}{3}\)
Học tốt~