cho M = { 2; 4; 9; 2018 ;2019 }
VIết tập hợp con của M gồm :
a) Có 1 chữ số
b) Có 2 chữ số
c) Số chẵn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\hept{\begin{cases}m^2+2⋮n\\n^2+2⋮m\end{cases}}\Rightarrow\left(m^2+2\right)\left(n^2+2\right)⋮mn\Rightarrow m^2n^2+2\left(m^2+n^2+2\right)⋮mn\)
Dễ có \(m^2n^2⋮mn\)nên \(2\left(m^2+n^2+2\right)⋮mn\)
Mà m,n lẻ nên mn lẻ hay \(\left(mn,2\right)=1\)suy ra \(m^2+n^2+2⋮mn\)(*)
Ta có đánh giá rằng số chính phương lẻ thì chia 4 dư 1 (Thật vậy xét các trường hợp 4k + 1 và 4k + 3)
\(\Rightarrow\)m2, n2 chia 4 dư 1 \(\Rightarrow m^2+n^2+2⋮4\)(**)
Từ (*) và (**) suy ra \(m^2+n^2+2⋮4mn\)(Do \(\left(mn,4\right)=1\))
Cái này là Tin học nha bạn. Bạn đăng đúng môn nha!
Với lại là bài này yêu cầu mình trả lời gì vậy?
a)đề \(\Rightarrow2M=2^2+2^3+2^4+...+2^{2019}
\Rightarrow M=2^{2019}-2\)
b)đề \(\Rightarrow M=(2+2^2)+(2^3+2^4)+...+(2^{2017}+2^{2018})\)
\(\Rightarrow M=2.3+3.\left(2^3\right)+3.2^4+...+3.2^{2017}\)
\(\Rightarrow M⋮3\left(đpcm\right)\)
Chắc đề là như này : Tìm tất cả các số nguyên dương m,n sao cho \(m+n^2⋮m^2-n\) và \(m^2+n⋮n^2-m\)
Ko mất tính tổng quát giả sử \(n\ge m\) . Ta xét các TH sau :
+ TH1: \(n>m+1\Rightarrow n-1>m\)
\(\Rightarrow n\left(n-1\right)>m\left(m+1\right)\Rightarrow n^2-m>m^2+n\)
\(\Rightarrow m^2+n⋮̸n^2-m\)
+ TH2: \(n=m+1\) \(\Rightarrow m+\left(m+1\right)^2⋮m^2-\left(m+1\right)\)
\(\Rightarrow m^2-m-1+4m+2⋮m^2-m-1\) \(\Rightarrow4m+2⋮m^2-m-1\)
\(\Rightarrow4m+2\ge m^2-m-1\Rightarrow m^2-5m-3\le0\)
\(\Rightarrow\frac{5-\sqrt{37}}{2}\le m\le\frac{5+\sqrt{37}}{2}\) \(\Rightarrow m\in\left\{0;1;2;3;4;5\right\}\)
Thử từng TH chú ý n = m + 1
+ TH3: \(n=m\) ta có : \(m+n^2⋮m^2-n\Rightarrow n^2+n⋮n^2-n\Rightarrow2n⋮n^2-n\)
\(\Rightarrow2n\ge n^2-n\) ( do \(2n>0\) ) \(\Rightarrow n^2-3n\le0\Rightarrow0\le n\le3\)
Thử từng TH với đk m = n.
Ta có: \(M=\left\{2;4;9;2018;2019\right\}\)
\(a)\) \(\left\{2;4;9\right\}\)
\(b)\) \(\varnothing\)
\(c)\) \(\left\{2;4;2018\right\}\)