\(\frac{8}{45}\times\frac{5}{4}\)giúp mình làm bài toán này đi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8\frac{4}{17}-\left(2\frac{5}{9}+3\frac{4}{17}\right)=\frac{140}{17}-\left(\frac{23}{9}+\frac{55}{17}\right)=\frac{140}{17}-\frac{886}{153}=\frac{22}{9}=2,444444444444\)
\(\frac{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{11}}{\frac{13}{4}-\frac{13}{5}+\frac{13}{7}+\frac{13}{11}}=\frac{3\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{11}\right)}{13\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{11}\right)}=\frac{3}{13}\)
\(\frac{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{11}}{\frac{13}{4}-\frac{13}{5}+\frac{13}{7}+\frac{13}{11}}\\ =\frac{3\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{11}\right)}{13\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{11}\right)}\\ =\frac{3}{13}\)
Giải:
Ta có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{2}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6};\frac{y}{6}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{15}\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{15}=\frac{x+y+z}{4+6+15}=\frac{50}{25}=2\)
+) \(\frac{x}{4}=2\Rightarrow x=8\)
+) \(\frac{y}{6}=2\Rightarrow y=12\)
+) \(\frac{z}{15}=2\Rightarrow z=30\)
Vậy x = 8
y = 12
z = 30
\(\frac{x}{2}=\frac{y}{3};\frac{y}{2}=\frac{z}{5}\) và x + y + z =50
\(\frac{x}{4}=\frac{y}{6};\frac{y}{6}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{15}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}+\frac{y}{6}+\frac{z}{15}=\frac{50}{25}=2\)
=> x = 2.4 = 8
=> y = 2.6 = 12
=> z = 2.15 = 30
Vậy x = 8;y = 12;z = 30.
Ta có:
\(\frac{5}{1\cdot7}+\frac{5}{7\cdot13}+\frac{5}{13\cdot19}+...+\frac{5}{91\cdot97}\)
= \(5\cdot\frac{1}{6}\cdot\left(\frac{6}{1\cdot7}+\frac{6}{7\cdot13}+\frac{6}{13\cdot19}+...+\frac{6}{91\cdot97}\right)\)
= \(\frac{5}{6}\cdot\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+...+\frac{1}{91}-\frac{1}{97}\right)\)
= \(\frac{5}{6}\cdot\left(1-\frac{1}{97}\right)\)
= \(\frac{5}{6}\cdot\frac{96}{97}\)
= \(\frac{80}{97}\)
5/1.7 + 5/7.13 + 5/13.19 + ... + 5/91.97
= 5/6.(1 - 1/7 + 1/7 - 1/13 + 1/13 - 1/19 + ... + 1/91 - 1/97)
= 5/6.(1 - 1/97)
= 5/6.96/97
= 80/97
\(\frac{59}{10}:\frac{3}{2}-\left(\frac{7}{3}\cdot\frac{17}{4}-28\cdot\frac{4}{3}\right):\frac{7}{4}\)
\(=\frac{59}{15}-\frac{29}{4}:\frac{7}{4}=\)\(\frac{59}{15}-\frac{29}{7}=\frac{-22}{105}\)
B = \(\frac{59}{10}:\frac{3}{2}-\left(\frac{7}{3}x\frac{17}{4}-2x\frac{4}{3}\right):\frac{7}{4}\)
= \(\frac{59}{10}x\frac{2}{3}-\left(\frac{119}{12}-\frac{8}{3}\right)x\frac{4}{7}\)
= \(\frac{59}{15}-\frac{29}{4}x\frac{4}{7}=\frac{59}{15}-\frac{29}{7}\)
= \(\frac{-22}{105}\)
C = \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}+\frac{1}{6x7}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}\)
= \(1-\frac{1}{7}=\frac{6}{7}\)
\(3\frac{1}{2}+4\frac{2}{5}=\left(3+4\right)+\left(\frac{1}{2}+\frac{2}{5}\right)=7+\frac{9}{10}=7\frac{9}{10}\)
nha....................................................
\(=\frac{2x4x5}{5x9x4}=\frac{2}{9}\)