K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=10cm

AH=4,8cm

b: Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

Suy ra: AH=EF=4,8cm

a: ΔABC vuông tại A có AH là đường cao

nên CA^2=CH*CB

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

CH=8^2/10=6,4cm

25 tháng 6 2016

Đặt BH = x (x > 0) => BC = (x + 6,4)

Có: AB2 = BH.BC => 36 = x(x + 6,4) => 36 = x2 + 6,4x => x2 + 6,4x - 36 = 0

          => (x + 10)(5x - 18) = 0 => x = -10 (loại) hoặc x = 18/5 (nhận)

=> BH = 18/5cm => BC = 18/5 + 6,4 = 10cm

Có: AC2 = HC.BC = 6,4 . 10 = 64 => AC = 8cm

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{6^2}+\frac{1}{8^2}=\frac{25}{576}\Rightarrow AH=\sqrt{\frac{576}{25}}=\frac{24}{5}cm\)

         Vậy BC = 10cm , BH = 18/5cm , AH = 24/5cm , AC = 8cm

26 tháng 6 2016

\(\Delta ABC\)có A=90 và AH là đường cao

Áp dụng hệ thức giữa cạnh góc vuông và hingf chiếu của nó trên cạnh huyền

 => \(AB^2=CH.BC\);  \(AC^2=HC.BC\)

<=>  \(AB^2=\left(BC-CH\right)BC\)

 <=>\(BC^2=AB^2+CH.BH\)

=>\(BC^2=6^2+6,4.BC\)

<=> \(BC^2-6,4.BC-36=0\)

=> BC = 10(cm) (nhận)  :  BC=- 3,6 (cm) (loại)

=> \(AC=\sqrt{CH.BC}=\sqrt{6,4.10}=8\)(cm)

=>BH=  BC - CH =10 - 6,4 = 3,6 (cm)

Áp dụng hệ thức giữa đường cao và các cạnh trong tam giác 

=> AH.BC =AB.AC

=>AH = \(\frac{AB.AC}{BC}=\frac{6.8}{10}=4.8\left(cm\right)\)

Vậy AH =4,8 (cm) ;  BC = 10 (cm)  ; AC =8(cm)  ; BH = 3,6 (cm)

2 tháng 8 2021

sai r b oi htlg dau tien sai roi bai nay phat dat x chu

 

31 tháng 3 2019

vẽ hình giùm mình với

31 tháng 3 2019

Không biết vẽ .

5 tháng 5 2019

MỌI NGƯỜI GIẢI HỘ MÌNH VỚI. 0,3 x Y + Y = 6,5

AH
Akai Haruma
Giáo viên
13 tháng 1

Lời giải:
a. Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20$ (cm) 

Áp dụng tính chất đường phân giác:

$\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}$

Mà: $BD+DC=BC=20$ nên:

$BD=20:(3+4).3=\frac{60}{7}$ (cm) 

$CD= 20:(3+4).4=\frac{80}{7}$ (cm) 

b.

$AH=2S_{ABC}:BC=\frac{AB.AC}{BC}=\frac{12.16}{20}=9,6$ (cm) 

$BH=\sqrt{AB^2-AH^2}=\sqrt{12^2-9,6^2}=7,2$ (cm) 
$HD = BD-BH = \frac{60}{7}-7,2=\frac{48}{35}$ (cm) 

$AD = \sqrt{AH^2+HD^2}=\sqrt{9,6^2+(\frac{48}{35})^2}=\frac{48\sqrt{2}}{7}$ (cm)

AH
Akai Haruma
Giáo viên
13 tháng 1

Hình vẽ: