Chứng minh rằng giá trị biểu thức :
M = 1 + 11 + 11^2 + ...+11^9=
cho mk các làm luon các bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-11 - ( x - 1 ) *( x - 2 )
= -11 - ( x^2 - 2x - x + 2 )
= - 11 - x^2 + 2x + x - 2
= -11 - x^2 + 3x - 2
= - 13 - x^2 + 3x
Với x < 3
=> x^2 < I 3x I < I - 13 I
=> -13 - x^2 + 3x luôn âm
Với x = 3 hoặc x = -3
=> x^2 = I 3x I < I - 13 I
=> -13 - x^2 + 3x luôn âm
Tương tự với x > 3
Vậy -11 - ( x - 1 )( x - 2 ) luôn âm với mọi x
Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến
\(A=\dfrac{5}{11}.\dfrac{5}{7}+\dfrac{5}{11}.\dfrac{2}{7}+\dfrac{6}{11}=\dfrac{5}{11}\left(\dfrac{5}{7}+\dfrac{2}{7}\right)+\dfrac{6}{11}=\dfrac{5}{11}.1+\dfrac{6}{11}=\dfrac{5}{11}+\dfrac{6}{11}=\dfrac{11}{11}=1\)
\(B=\dfrac{3}{13}.\dfrac{6}{11}+\dfrac{3}{13}.\dfrac{9}{11}-\dfrac{3}{13}.\dfrac{4}{11}=\dfrac{3}{13}\left(\dfrac{6}{11}+\dfrac{9}{11}-\dfrac{4}{11}\right)=\dfrac{3}{13}.1=\dfrac{3}{13}\)
\(C=\left(\dfrac{12}{16}-\dfrac{31}{22}+\dfrac{14}{91}\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)=\left(\dfrac{12}{16}-\dfrac{31}{22}+\dfrac{14}{91}\right)\left(\dfrac{3}{6}-\dfrac{2}{6}-\dfrac{1}{6}\right)=\left(\dfrac{12}{16}-\dfrac{31}{22}+\dfrac{14}{91}\right).0=0\)
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
(3x-5)(2x+11)-(2x+3)(3x+7)
=6x2+23x-55-6x2-23x-21
=(6x2-6x2)+(23x-23x)-55-21
=0+0-76
=-76.
Vậy gt biểu thức ko phụ thuộc vào biến x