Chứng minh rằng : n4+2n3-n2-2n chia hết cho 24 vs mọi n ∈ Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = n 4 – 2 n 3 – n 2 +2n = (n – 2)(n – 1)n(n + 1) là tích của 4 số nguyên liên tiếp do đó A ⋮ 24 .
Để n4 + 2n3 - n2 - 2n chia hết cho 24 thì phải chia hết cho 4 và 6
Ta có \(n^4+2n^3-n^2-2n=n^2\left(n^2-1\right)+2n\left(n^2-1\right)\)
\(=\left(n^2-1\right)\left(n^2+2\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Biểu thức trên có tích là 4 số nguyên liên tiếp nên sẽ chia hết cho 4
Để biểu thức chia hết cho 6 thì phải chia hết cho 2 và 3.Biểu thức trên là tích của 4 số nguyên liên tiếp nên sẽ chia hết cho 2 va cũng có ít nhất 1 số chia hết cho 3 nên sẽ chia hết cho 6
Vậy biểu thức chia hết cho 24
Để n4 + 2n3 - n2 - 2n chia hết cho 24 thì phải chia hết cho 4 và 6
Ta có
�
4
+
2
�
3
−
�
2
−
2
�
=
�
2
(
�
2
−
1
)
+
2
�
(
�
2
−
1
)
n
4
+2n
3
−n
2
−2n=n
2
(n
2
−1)+2n(n
2
−1)
=
(
�
2
−
1
)
(
�
2
+
2
)
=
(
�
−
1
)
�
(
�
+
1
)
(
�
+
2
)
=(n
2
−1)(n
2
+2)=(n−1)n(n+1)(n+2)
Biểu thức trên có tích là 4 số nguyên liên tiếp nên sẽ chia hết cho 4
Để biểu thức chia hết cho 6 thì phải chia hết cho 2 và 3.Biểu thức trên là tích của 4 số nguyên liên tiếp nên sẽ chia hết cho 2 va cũng có ít nhất 1 số chia hết cho 3 nên sẽ chia hết cho 6
Vậy biểu thức chia hết cho 24
Đúng ko nek
Câu hỏi của luu thi thao ly - Toán lớp 8 - Học toán với OnlineMath
+) Giả sử n là số chẵn
Nếu n là số chẵn thì n chia hết cho 2
=> n(n+)(2n+1) chia hết cho 2
+) Giả sử n là số lẻ
Nếu n là số lẻ thì n+1 là số chẵn và chia hết cho 2
=> n(n+1)(2n+1) chia hết cho 2
<=> n(n+1)(2n+1) chia hết cho 2 với mọi n thuộc Z (1)
Vì n thuộc Z nên n có dạng 3k;3k+1 và 3k+2
(+) Với n=3k
=> n chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3
(+) Với n=3k+1
=> 2n+1 = 2.(3k+1)+1 = 6k+2+1 = 6k+3 chia hết cho 3
=> n(n+1)(2n+1) chia hết cho 3
(+) Với n=3k+2
=> n+1 = 3k+2+1 = 3k+3 chia hết cho 3
=> n(n+1)(2n+1) chia hết cho 3
<=> n(n+1)(2n+1) chia hết cho 3 với mọi n thuộc Z (2)
Từ (1) và (2) => n(n+1)(2n+1) chia hết cho 2.3 ( vì 2 và 3 là hai số nguyên tố cùng nhau )
=> n(n+1)(2n+1) chia hết cho 6
=> ĐPCM
__HT__ Merry Christmas__
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
\(1,\left(2n-3\right)^2-9=\left(2n-3-3\right)\left(2n-3+3\right)=\left(2n-6\right)2n=4n\left(n-3\right)⋮4\)
\(2,=a^3\left(a-2\right)-a\left(a-2\right)=\left(a-2\right)\left(a^3-a\right)=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\)
Vì đây là tích 4 số nguyên lt nên chia hết cho \(1\cdot2\cdot3\cdot4=24\)
Câu hỏi của luu thi thao ly - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo link trên nhé!
Ta có n 2 (n + 1) + 2n(n + 1) = ( n 2 + 2n).(n+ 1)= n(n+ 2).(n+1) = n(n + 1)(n + 2)
Vì n và n + 1 là 2 số nguyên liên tiếp nên có một số chia hết cho 2
⇒ n(n + 1) ⋮ 2
n, n + 1, n + 2 là 3 số nguyên liên tiếp nên có một số chia hết cho 3
⇒ n(n + 1)(n + 2) ⋮ 3 mà ƯCLN (2;3) = 1
vậy n(n + 1)(n + 2) ⋮ (2.3) = 6 với mọi số nguyên n
Ta có : \(n^4+2n^3-n^2-2n\)
\(=n^3\left(n+2\right)-n\left(n+2\right)\)
\(=\left(n+2\right)\left(n^3-n\right)\)
\(=n\left(n^2-1\right)\left(n+2\right)\)
\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Do : \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích của 4 số nguyên liên tiếp nên chia hết cho 24 .
Vậy \(n^4+2n^3-n^2-2n\) chia hết cho 24 ( đpcm )
Ta có:
\(n^4+2n^3-n^2-2n\)
\(=n^3\left(n+2\right)-n\left(n+2\right)\)
\(=\left(n+2\right)\left(n^3-n\right)\)
\(=\left(n+2\right)n\left(n^2-1\right)\)
\(=\left(n+2\right)n\left(n+1\right)\left(n-1\right)\)
\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Vì \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮24\)
\(\Rightarrow n^4+2n^3-n^2-2n⋮24\)