K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2018

bạn ơi có thiếu +3 hay j ko

31 tháng 7 2018

Hỏi đáp Toán

5 tháng 8 2018

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

17 tháng 5 2019

Ta có: \(a=b=c\Rightarrow\hept{\begin{cases}a^3=abc\\a^3=b^3=c^3\end{cases}}\)

Vì \(a^3=b^3=c^3\Rightarrow a^3+b^3+c^3=3a^3\)

\(\Rightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)

17 tháng 5 2019

\(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3=-c^3\)

\(\Leftrightarrow a^3+3ab\left(a+b\right)+b^3+c^3=0\)

\(\Leftrightarrow a^3-3abc+b^3+c^3=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

5 tháng 7 2016

Nếu :  a + b + c = 0 
=> a + b = -c 
=> (a + b)3 = -c3 
=>a3+b3+c3 =-3ab(a + b)=3abc

5 tháng 7 2016

Chỉ biết vậy thôi!!!!

22 tháng 10 2018

a/ \(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow\left[\left(a+b\right)+c\right]^3=0\)

\(\Leftrightarrow\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3a^2b+3ab^2+3bc^2+3b^2c+3a^2c+3ac^2+6abc=0\)

\(\Leftrightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3bc^2+3b^2c+3abc\right)+\left(3ac^2+3a^2c+3abc\right)-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3+3abc\left(a+b+c\right)+3bc\left(a+b+c\right)+3ac\left(a+b+c\right)-3abc=0\)

\(a+b+c=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)

22 tháng 10 2018

còn câu b thì sao bn, giúp nhanh nhanh mk vs

29 tháng 9 2019

a ) \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

Nếu : \(a+b+c=0\) thì đẳng thức trên đúng .

\(\Rightarrowđpcm\)

b ) \(a+b+c+d=0\)

\(\Rightarrow a+b=-\left(c+d\right)\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(c+d\right)\left(cb-cd\right)\left(đpcm\right)\)

Chúc bạn học tốt !!!

29 tháng 9 2019

a ) a^3+b^3+c^3=3abca3+b3+c3=3abc

\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0⇔(a+b)3+c3−3ab(a+b)−3abc=0

\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0⇔(a+b+c)(a2+b2+c2−abbcac)=0

Nếu : a+b+c=0a+b+c=0 thì đẳng thức trên đúng .(đpcm)

b ) a+b+c+d=0a+b+c+d=0

\Rightarrow a+b=-\left(c+d\right)\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3⇒a+b=−(c+d)⇔(a+b)3=−(c+d)3

\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)⇔a3+b3+c3+d3=−3ab(a+b)−3cd(c+d)

\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)⇔a3+b3+c3+d3=3ab(c+d)−3cd(c+d)

\Leftrightarrow a^3+b^3+c^3+d^3=3\left(c+d\right)\left(cb-cd\right)\left(đpcm\right)⇔a3+b3+c3+d3=3(c+d)(cbcd)(đpcm)