Tìm giá trị lớn nhất của biểu thức:
E=x-|x|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x-1\right)^2+8\ge8\\ A_{min}=8\Leftrightarrow x=1\\ B=\left(x+3\right)^2-12\ge-12\\ B_{min}=-12\Leftrightarrow x=-3\\ C=x^2-4x+3+9=\left(x-2\right)^2+8\ge8\\ C_{min}=8\Leftrightarrow x=2\\ E=-\left(x+2\right)^2+11\le11\\ E_{max}=11\Leftrightarrow x=-2\\ F=9-4x^2\le9\\ F_{max}=9\Leftrightarrow x=0\)
Ta có: \(E=\dfrac{x^2+8}{x^2+2}=\dfrac{x^2+2+6}{x^2+2}=1+\dfrac{6}{x^2+2}\)
Để E đạt GTLN thì \(\dfrac{6}{x^2+2}\) đạt GTLN hay \(x^2+2\) đạt GTNN
mà \(x^2+2\ge2\)\(\Rightarrow\)\((\dfrac{6}{x^2+2})_{max}=\dfrac{6}{2}=3\)
\(\Rightarrow E_{max}=1+3=4\Leftrightarrow x=0\)
Vì |x-2| \(\ge\) 0 với mọi x
=>\(\frac{1}{2}-\left|x-2\right|\le\frac{1}{2}\) với mọi x
=>MaxA=1/2
Dấu "=" xảy ra <=> \(\left|x-2\right|=0< =>x=2\)
Vậy..............
các bạn trả lời nhanh giúp mình nhé, ngày mai cô kiểm tra rồi
- p lon nhat khi x = 7 , p nho nhat khi x = 6
- p lon nhat = 2554 , p nho nhat = 2014
dung khong ta ?
Xét hai TH
TH1 x≥0 => |x|=x
=>E=x-x=0
TH2:x<0=>x= -x
=>E= x - (-x)=x + x = 2x