K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2018

Ta có:

\(2\left(\sqrt{n+1}-\sqrt{n}\right)=\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)}=\dfrac{2}{\sqrt{n+1}+\sqrt{n}}< \dfrac{2}{2\sqrt{n}}=\dfrac{1}{\sqrt{n}}\)

\(\Rightarrow S>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\right)=2\left(\sqrt{101}-1\right)>18\)

\(2\left(\sqrt{n}-\sqrt{n-1}\right)=\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n-1}\right)}{\left(\sqrt{n}+\sqrt{n-1}\right)}=\dfrac{2}{\sqrt{n}+\sqrt{n-1}}>\dfrac{2}{2\sqrt{n}}=\dfrac{1}{\sqrt{n}}\)

\(\Rightarrow S< 1+2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)=1+2\left(\sqrt{100}-1\right)=19\)

NV
8 tháng 9 2020

\(S=\frac{2}{2}+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{\sqrt{100}}\)

\(S>\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+\frac{2}{\sqrt{3}+\sqrt{4}}+...+\frac{2}{\sqrt{100}+\sqrt{101}}\)

\(S>2\left(\sqrt{2}-\sqrt{1}\right)+2\left(\sqrt{3}-\sqrt{2}\right)+...+2\left(\sqrt{101}-\sqrt{100}\right)\)

\(S>2\left(\sqrt{101}-1\right)>2\left(\sqrt{100}-1\right)=18\) (1)

\(S< 1+\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{99}+\sqrt{100}}\)

\(S< 1+2\left(\sqrt{2}-1\right)+2\left(\sqrt{3}-\sqrt{2}\right)+...+2\left(\sqrt{100}-\sqrt{99}\right)\)

\(S< 1+2\left(\sqrt{100}-1\right)=19\) (2)

(1); (2) \(\Rightarrow18< S< 19\)

22 tháng 7 2021

a

23 tháng 8 2021

\(\sqrt{8}-2\sqrt{32}+3\sqrt{50}\)

\(\sqrt{2.2^2}-2\sqrt{4^2.2}+3\sqrt{5^2.2}\)

\(2\sqrt{2}-8\sqrt{2}+15\sqrt{2}\)

\(9\sqrt{2}\)

 

23 tháng 8 2021

\(\dfrac{1}{3}+\sqrt{2}-\dfrac{1}{3}-\sqrt{2}\)

\(\left(\dfrac{1}{3}-\dfrac{1}{3}\right)\left(\sqrt{2}-\sqrt{2}\right)\)

= 0

26 tháng 6 2023

Ta có: 151+152+...+175>175+175+...+175=2575=13

176+177+...+1100>1100+1100+...+1100=25100=14

=> S>13+14=712 (1)

Ta có: 151+152+...+175<150+150+...+150=2550=12

176+177+...+1100<175+175+...+175=2575=13

=> S<12+13=56 (2)

Từ (1) và (2) => 712 < S<56 ​( đpcm )

26 tháng 6 2023

Ta có:

- 1/51 > 1/75, 1/52 > 1/75 ...

=> 1/51 + 1/52 + ... + 1/75 > 1/75 + ... 1/75 = 25/75 = 1/3

- 1/76 > 1/100, 1/77 > 1/100 ...

=> 1/76 + 1/77 + ... + 1/100 > 1/100 + ... + 1/100 = 25/100 = 1/4

Từ đó : S = ( 1/51 + ... + 1/75 ) + ( 1/76 + ... + 1/100 ) > 1/3 + 1/3 = 7/12 (1)

- 1/51 < 1/50, 1/52 < 1/50 ... 

=> 1/51 + 1/52 + ... + 1/75 < 1/50 + ... 1/50 = 25/50 = 1/2

- 1/76 < 1/75, 1/77 < 1/75...

=> 1/76 + 1/77 + ... + 1/100 < 1/75 + ... + 1/75 = 25/75 = 1/3

Từ đó : S = ( 1/51 + ... + 1/75 ) + ( 1/76 + ... + 1/100 ) < 1/2 + 1/3 = 5/6 (2)

từ (1) và (2) => 5/6 > S > 7/12

* Chúc bn học tốt !!!

9 tháng 8 2017

\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=2-\dfrac{1}{100}< 2\)

\(\Rightarrow\) \(S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

Vậy \(S< 2\left(đpcm\right).\)

9 tháng 8 2017

Câu 1 :

Ta có :

\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+..........+\dfrac{1}{100^2}\)

Ta thấy :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

........................

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Leftrightarrow S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+.......+\dfrac{1}{99.100}\)

\(\Leftrightarrow S< 1+1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Leftrightarrow S< 1+1-\dfrac{1}{100}\)

\(\Leftrightarrow S< 2+\dfrac{1}{100}< 2\)

\(\Leftrightarrow S< 2\rightarrowđpcm\)

21 tháng 2 2023

Ta có : 

`5S=5(1/(5^2)+2/(5^3)+3/(5^4)+...+99/(5^100))`

`5S=1/5+2/(5^2)+3/(5^3)+...+99/(5^100)`

`=>5S-S=1/5+2/(5^2)+3/(5^3)+...+99/(5^100)-(1/(5^2)+2/(5^3)+3/(5^4)+...+99/(5^100))`

`4S=1/5+1/(5^2)+1/(5^3)+1/(5^4)+...+1/(5^99) -99/(5^100)`

`20S=5(1/5+1/(5^2)+1/(5^3)+...+1/(5^99)-99/(5^100))`

`20S=1+1/5+1/(5^2)+....+1/(5^98)-99/(5^99)`

`=>20S-4S=(1+1/5+1/(5^2)+...+1/(5^98)-99/(5^99))-(1/5+1/(5^2)+1/(5^3)+...+1/(5^99)-99/(5^100))`

`=>16S=1-99/(5^99)-1/(5^99)-99/(5^100)`

Vì `-99/(5^99)-1/(5^99)-99/(5^100)<0=>1-99/(5^99)-1/(5^99)-99/(5^100)<1`

`=>S<1/16`