Đặt\(\frac{a}{b}=\frac{c}{d}=k\)=>a=bk ; c=dk
VT= \(\frac{3a^2-4ab+5b^2}{2b^2+3ab}=\frac{3b^2k^2-4b^2k+5b^2}{2b^2+3b^2k}=\frac{b^2\left(3k^2-4k+5\right)}{b^2\left(2+3k\right)}=\frac{3k^2-4k+5}{2+3k}\)
VP = \(\frac{3c^2-4cd+5d^2}{2c^2+3cd}=\frac{3d^2k^2-4d^2k+5d^2}{2d^2+3d^2k}=\frac{d^2\left(3k^2-4k+5\right)}{d^2\left(2+3k\right)}=\frac{3k^2-4k+5}{2+3k}\)
nhận thấy VT=VP suy ra đpcm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Máy mk nhấn vào chữ trả lời thì nó hay bị lỗi lắm, nên mới ghi thế này, hì hì
Bài 1:
Cho a,b,c,d là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức: - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ giải toán
Bài 2:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1+1+1\right)\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\)
Cần chứng minh \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}}=3\) (đúng)
Khi a=b=c
Đặt \(\frac{a}{b}=\frac{c}{d}=\frac{m}{n}=k\) nên a=bk;c=dk và m=nk
=>\(\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{\left(b+d\right)k}{b+d}=k\)(1)
=>\(\frac{a-m}{b-n}=\frac{bk-nk}{b-n}=\frac{\left(b-n\right)\cdot k}{b-n}=k\)(2)
Từ (1);(2) =>ĐPCM
Bạn tham khảo ở đây : https://olm.vn/hoi-dap/detail/66012452128.html
C1 : \(\text{Đặt }\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\Rightarrow VT=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}\left(1\right)\)
\(VP=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) => đpcm
Bài toán hay dùng BĐT Vacs\(\sqrt{a^2-a+1\:}+\sqrt{b^2-b+1}+\sqrt{c^2-c+1}\ge a+b+c\)
Kết hợp giữa việc sử dụng phương pháp tiếp tuyến và tinh ý nhận ra bổ đề Vacs
Chú tth thử làm nhứ. Trong TKHĐ của t có sol rồi nha !!!!