K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2021

\(A=\left(1+3+3^2\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\\ A=\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(1+...+3^{99}\right)=13\left(1+...+3^{99}\right)⋮13\)

27 tháng 2 2020

a) Tìm hai số nguyên a , b biết : 

(a + 2) . (b – 3) = 5.

Vì a,b là số nguyên => a+2;b-3 là số nguyên

                                => a+2;b-3 thuộc Ư(5)

Ta có bảng:
 

a+215-1-5
b-351-5-1
a-13-3-7
b84-22

Vậy..........................................................................................................................................

b)Dễ rồi nên bn tự làm nha

c)+)Ta có:p là số nguyên tố;p>3

=>p\(⋮̸3\)

=>p chia 3 dư 1 hoặc p chia 3 dư 2

=>p=3k+1 hoặc p=3k+2 (k\(\inℕ^∗\))

*Th1:p=3k+1                 (k\(\inℕ^∗\))

=>(p-1).(p+1)=(3k+1-1).(3k+1+1)=3k.(3k+2)\(⋮\)3(1)

+)Ta lại có:p là số nguyên tố;p>3

=>p là số lẻ

=>p-1 là số chẵn

=>p+1 là số chẵn

=>(p-1) và (p+1) là 2 số chẵn liên tiếp

=>(p-1).(p+1)\(⋮\)8(2)

+)Mà ƯCLN(3,8)=1(3)

+)Từ (1);(2) và (3)

=>(p-1).(p+1)\(⋮\)3.8

=>(p-1).(p+1)\(⋮\)24

Vậy (p-1).(p+1)\(⋮\)24

*TH2:Bạn làm tương tự nha bài này dài lắm nên mk ko làm hết dc

Chúc bn học tốt

12 tháng 4 2016

a+10b chia hết cho 17

=>2a+20b chia hết cho 17(17 và 2 nguyên tố cùng nhau mới có trường hợp này)

cố định đề bài 2a+3b chia hết cho 17

nếu hiệu 2a+20b-(2a+3b) chia hết cho 17 thì 100% 2a+20b chia hết cho 17 cũng như a+10b chia hết cho 17

hiệu là 17b,có 17 chia hết cho 17=>17b chia hết 17

vậy a+10b chia hết cho 17 nếu cái vế kia xảy ra

ngược lai bạn cũng chứng minh tương tự nhá,ko khác đâu

chúc học tốt

15 tháng 2 2019

Vì a,b là các số nguyên dương nên:

\(4^a\equiv1\left(mod3\right)\)

\(\Rightarrow4^a+2\equiv0\left(mod3\right)\)

Mà \(4^a+2\equiv0\left(mod2\right)\)

\(\Rightarrow4^a+2\equiv0\left(mod6\right)\) vì \(\left(2;3\right)=1\)

Ta có:\(4^a+a+b=\left(4^a+2\right)+\left(a+1\right)+\left(b+2007\right)-2010⋮6\)

Vậy \(4^a+a+b⋮6\)

16 tháng 2 2019

lm lại (đầy đủ hơn) haizz

\(4\equiv1\left(\text{mod 3}\right)\Rightarrow4^a\equiv1^a\left(\text{mod 3}\right)\Rightarrow4^a\equiv1\left(\text{mod 3}\right)\)

\(4^a+a+b=4^a+a+1+b+2006-2007\)

vì a+1 và a+2007 chia hết cho 6=>a+b+2008 chia hết cho 3=>a+b+2007 chia 3 dư 2=>4^a+a+b chia hết cho 3 và 2007 chia hết cho 3=>4^a+a+b chia hết cho 3

a+1 và b+2007 chia hết cho 6=>a+1 chia hết cho 2=>a lẻ và  b lẻ

4^a+a+b chẵn=>4^a+a+b chia hết cho 2=> 4^a+a+b chia hết cho 2.3 hay chia hết cho 6

Vậy: 4^a+a+b chia hết cho 6 (đpcm)

24 tháng 8 2019

a.Vì x,y là số nguyên dương

     => 1003 và 2y cũng là số nguyên dương                              

 Vì 2008 là số chẵn 

 mà 2y cũng là số chẵn

=> 1003x là số chẵn

Vì 1003 là số lẻ 

mà 1003x là số chẵn

=> x là số chẵn 

=> x chia hết cho 2 (đpcm)

                       Vậy ta có đpcm