Cho a,b,c > 0 và a + b + c = 3
CMR: \(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\le3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cô -si cho 3 số không âm là a+ 2b, 3,3, ta được:
\(\sqrt[3]{a+2b}=\frac{1}{\sqrt[3]{9}}\sqrt[3]{3.3\left(a+2b\right)}\le\frac{1}{\sqrt[3]{9}}.\frac{3+3+\left(a+2b\right)}{3}\)
\(=\frac{6+a+2b}{3\sqrt[3]{9}}\)
Tương tự ta có: \(\sqrt[3]{b+2c}\le\frac{6+b+2c}{3\sqrt[3]{9}}\); \(\sqrt[3]{c+2a}\le\frac{6+c+2a}{3\sqrt[3]{9}}\)
\(\Rightarrow\sqrt[3]{a+2b}+\sqrt[3]{b+2c}+\sqrt[3]{c+2a}\le\frac{18+3\left(a+b+c\right)}{3\sqrt[3]{9}}\)
\(=\frac{27}{3\sqrt[3]{9}}=3\sqrt[3]{3}\)
(Dấu "="\(\Leftrightarrow a=b=c=1\))
\(VT\le\frac{1}{\sqrt[3]{9}}\left(\frac{a+2b+3+3}{3}+\frac{b+2c+3+3}{3}+\frac{c+2a+3+3}{3}\right)\)
\(=\frac{1}{\sqrt[3]{9}}.\frac{3\left(a+b+c\right)+18}{3}=\frac{9}{\sqrt[3]{9}}=\sqrt[3]{81}=3\sqrt[3]{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)
Áp dụng BĐT phụ:
\(3\left(a^2+a^2+b^2\right)\ge\left(2a+b\right)^2\)
P=\(\sum\dfrac{a}{\sqrt{2a^2+b^2}+\sqrt{3}}\)
\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P=\sum\dfrac{a}{\sqrt{3\left(a^2+a^2+b^2\right)}+3}\)
\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P\le\sum\dfrac{a}{\sqrt{\left(2a+b\right)^2}+a+b+c}=\sum\dfrac{a}{3a+2b+c}\)
Xét M=\(\sum\dfrac{a}{3a+2b+c}\)
\(3-3M=\sum\dfrac{2b+c}{3a+2b+c}\)
\(\Rightarrow\)\(3-3M=\sum\dfrac{\left(2b+c\right)^2}{\left(3a+2b+c\right)\left(2b+c\right)}\ge\)\(\dfrac{\left(3a+3b+3c\right)^2}{\sum\left(3a+2b+c\right)\left(2b+c\right)}\)
Mà
\(\sum\left(3a+2b+c\right)\left(2b+c\right)=5a^2+5b^2+5c^2+13ab+13bc+13ac=5\left(a+b+c\right)^2+3\left(ab+bc+ac\right)\le5\left(a+b+c\right)^2+\left(a+b+c\right)^2\)
\(\Rightarrow\)\(3-3M\ge\dfrac{\left(3a+3b+3c\right)^2}{6\left(a+b+c\right)^2}\ge\dfrac{9}{6}=\dfrac{3}{2}\)
\(\Rightarrow\)\(M\le\dfrac{1}{2}\)
\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P\le\dfrac{1}{2}\Rightarrow P\le\dfrac{\sqrt{3}}{2}\)
Ta có:
\(a^3+1+1+b^3+1+1+c^3+1+1\ge3\left(a+b+c\right)\)
\(\Rightarrow3\left(a+b+c\right)\le a^3+b^3+c^3+6\le9\)
\(\Rightarrow a+b+c\le3\)
\(\Rightarrow ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\le3\)
Quay lại bài toán ta có:
\(\left(\frac{ab}{\sqrt{c+3}}+\frac{bc}{\sqrt{a+3}}+\frac{ca}{\sqrt{b+3}}\right)^2\le\left(ab+bc+ca\right)\left(\frac{ab}{c+3}+\frac{bc}{a+3}+\frac{ca}{b+3}\right)\)
\(\le3.\left(\frac{ab}{c+3}+\frac{bc}{a+3}+\frac{ca}{b+3}\right)\)
\(\le3.\left(\frac{ab}{c+a+c+b}+\frac{bc}{a+b+a+c}+\frac{ca}{b+a+b+c}\right)\)
\(\le\frac{3}{4}.\left(\frac{ab}{c+a}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{bc}{c+a}+\frac{ca}{a+b}+\frac{ca}{b+c}\right)\)
\(=\frac{3}{4}.\left(\frac{ca}{a+b}+\frac{bc}{a+b}+\frac{bc}{c+a}+\frac{ab}{c+a}+\frac{ca}{b+c}+\frac{ab}{b+c}\right)\)
\(=\frac{3}{4}.\left(a+b+c\right)\le\frac{9}{4}\)
\(\Rightarrow\frac{ab}{\sqrt{c+3}}+\frac{bc}{\sqrt{a+3}}+\frac{ca}{\sqrt{b+3}}\le\frac{3}{2}\)
\(\Rightarrow\frac{2ab}{\sqrt{c+3}}+\frac{2bc}{\sqrt{a+3}}+\frac{2ca}{\sqrt{b+3}}\le3\)
PS: Được chưa 2 cô nương Hoàng Lê Bảo Ngọc, Witch Rose.
Số t khổ quá mà. Thấy có bài giải mừng húm tưởng khỏi cần giải nữa thì vô đọc bài của bác Thắng Nguyễn thấy mệt mệt. Bác lo mà úp mặt vô tường đi :(
Cái này xấu lắm đấy nhé :v, chủ thớt muốn thì post thôi @@
*)Note:\(Σ\) là tổng đối xứng viết tắt cho gọn
\(\text{∏}\) tích đối xứng viết tắt luôn :v \(\text{∏}a=abc;Σa=a+b+c\)
\(BDT\Leftrightarrow\frac{ab}{\sqrt{c+3}}+\frac{bc}{\sqrt{a+3}}+\frac{ca}{\sqrt{b+3}}\le\frac{3}{2}\)
Theo Cauchy-Schwarz và đặt \(a+b+c=3u;ab+bc+ca=3v^2;abc=w^3\)
\(\left(Σ\frac{ab}{\sqrt{c+3}}\right)^2\leΣab\cdotΣ\frac{ab}{c+3}\le\frac{9}{4}\)
\(\Leftrightarrow\frac{3v^2Σab\left(a+3\right)\left(b+c\right)}{\text{∏}\left(a+3\right)}\le\frac{9}{4}\)
\(\Leftrightarrow4v^2Σ\left(a^2b^2+3a^2b+3a^2c+9ab\right)\le3\left(abc+27+Σ\left(3ab+9a\right)\right)\)
\(\Leftrightarrow4v^2\left(9v^4-6uw^3+27uv^2-9w^3+27v^2\right)\le3\left(w^3+9v^2+27+27u\right)\)
\(\Leftrightarrow w^3\left(1+12v^2+8uv^2\right)+27u+27+9v^2\ge12v^6+36uv^4+36v^4\)
A[ dụng BDT Schur có:\(w^3\ge4uv^2-3u^3\)
Nên cần cm \(\left(4uv^2-3u^3\right)\left(1+12v^2+8uv^2\right)+27u+27+9v^2\ge12v^6+36uv^4+36v^4\)
\(\Leftrightarrow32u^2v^4+12uv^4+4uv^2+9v^2+27u+27\ge12v^6+36v^4+3u^3+24u^2v^2+36u^3v^2\)
Đúng theo BĐT P-M và BĐT AM-GM
P.s: Đọc đến đây thì cho hỏi cái đề đâu ra thế, thật sự lm ko muốn dùng cách này đâu @@ hại não, hại mắt
ta có \(\sqrt[3]{3a+1}=\frac{\sqrt[3]{\left(3a+1\right)2.2}}{\sqrt[3]{4}}\le\frac{3a+1+2+2}{3\sqrt[3]{4}}=\frac{3a+5}{3\sqrt[3]{4}}\)
tương tự \(\hept{\begin{cases}\sqrt[3]{3b+1}\le\frac{3b+5}{3\sqrt[3]{4}}\\\sqrt[3]{3c+1}\le\frac{3c+5}{3\sqrt[3]{4}}\end{cases}}\)
\(=>P\le\frac{3\left(a+b+c\right)+15}{3\sqrt[3]{4}}=\frac{6}{\sqrt[3]{4}}=3\sqrt[3]{2}\)
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
\(a^3+1+1\ge3a\); \(b^3+1+1\ge3b\); \(c^3+1+1\ge3c\)
\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
b/ Hoàn toàn tương tự:
\(a+1+1\ge3\sqrt[3]{a}\) ; \(b+1+1\ge3\sqrt[3]{b}\); \(c+1+1\ge3\sqrt[3]{c}\)
Cộng vế với vế ta có đpcm
c/ Vẫn như trên:
\(a^9+1+1\ge3a^3\) ; \(b^9+2\ge3b^3\); \(c^9+2\ge3c^3\)
\(\Rightarrow a^9+b^9+c^9+6\ge3\left(a^3+b^3+c^3\right)=a^3+b^3+c^3+2\left(a^3+b^3+c^3\right)\)
Mà \(a^3+b^3+c^3\ge3\) từ chứng minh câu b
\(\Rightarrow a^9+b^9+b^9+6\ge a^3+b^3+c^3+2.3\)
d/Vẫn 1 kiểu cũ:
\(a+1+1+1+1\ge5\sqrt[5]{a}\) ; \(b+4\ge5\sqrt[5]{b}\); \(c+4\ge5\sqrt[5]{c}\)
Cộng lại:
\(a+b+c+12\ge5\left(\sqrt[5]{a}+\sqrt[5]{c}+\sqrt[5]{c}\right)\)
\(\Leftrightarrow3+12\ge5\left(\sqrt[5]{a}+\sqrt[5]{b}+\sqrt[5]{c}\right)\)
Xin chao ban theo doi loi giai cua minh nhe.
Ap dung BDT AM-GM ta co:
\(3VT=\sqrt[3]{27a}+\sqrt[3]{27b}+\sqrt[3]{27c}\)
\(=\sqrt[3]{\left(a+b+c\right)a\cdot3\cdot3}+\sqrt[3]{\left(a+b+c\right)b\cdot3\cdot3}+\sqrt[3]{\left(a+b+c\right)c\cdot3\cdot3}\)
\(\le\frac{a+b+c+3a+3}{3}+\frac{a+b+c+3b+3}{3}+\frac{a+b+c+3c+3}{3}\)
\(\le\frac{a+b+c+3a+3}{3}+\frac{a+b+c+3b+3}{3}+\frac{a+b+c+3c+3}{3}\)
\(=2\left(a+b+c\right)+3=2\cdot3+3=9\)
Hay \(3VT\le9\Leftrightarrow VT\le3\)
Dau "=" khi \(a=b=c=1\)(ban tu lam ro phan nay nhe!)