Tìm X:
(1/1x1+1/2x3+1/3x4+............+1/9x10)x100-[5/2:(X+206/100)]:1/2=89
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) \(2x-5=21\)
\(\Leftrightarrow\) \(2x=21+5\)
\(\Leftrightarrow\) \(2x=26\)
\(\Leftrightarrow\) \(x=26:2\)
\(\Leftrightarrow\) \(=13\)
\(b)\) \(\frac{3}{4}+\frac{1}{4}x=\frac{5}{6}\)
\(\Leftrightarrow\) \(\frac{1}{4}x=\frac{5}{6}-\frac{3}{4}\)
\(\Leftrightarrow\) \(\frac{1}{4}x=\frac{1}{12}\)
\(\Leftrightarrow\) \(x=\frac{1}{3}\)
Bài 1:
Đặt \(A=\frac{2}{1x2}+\frac{2}{2x3}+\frac{2}{3x4}+...+\frac{2}{18x19}+\frac{2}{19x20}\)
\(\frac{A}{2}=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{18x19}+\frac{1}{19x20}\)
\(\frac{A}{2}=\frac{2-1}{1x2}+\frac{3-2}{2x3}+\frac{4-3}{3x4}+...+\frac{19-18}{18x19}+\frac{20-19}{19x20}\)
\(\frac{A}{2}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}=\frac{19}{20}\)
\(A=\frac{2x19}{20}=\frac{19}{10}\)
Bài 2:
Đặt \(B=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{8x9}+\frac{1}{9x10}\)
Làm tương tự câu 1 có \(B=1-\frac{1}{10}=\frac{9}{10}\)
\(Bx100=\frac{9}{10}x100=90\)
=> \(\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]:\frac{1}{2}=1\)
=> \(\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]=\frac{1}{2}\)
=> \(x+\frac{206}{100}=\frac{5}{2}:\frac{1}{2}=5\Rightarrow x=5-\frac{206}{100}=\frac{294}{100}=\frac{147}{50}\)
\(\Leftrightarrow2\left(x-\dfrac{1}{3}\right)\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)=\dfrac{3}{4}\)
\(\Leftrightarrow2\left(x-\dfrac{1}{3}\right)\left(1-\dfrac{1}{10}\right)=\dfrac{3}{4}\Leftrightarrow\dfrac{9}{10}\left(x-\dfrac{1}{3}\right)=\dfrac{3}{8}\)
\(\Leftrightarrow x-\dfrac{1}{3}=\dfrac{5}{12}\Leftrightarrow x=\dfrac{5}{12}+\dfrac{1}{3}=\dfrac{9}{12}=\dfrac{3}{4}\)
\(\frac{9}{10}.100-\left(\frac{5}{2}\left(y+\frac{206}{100}\right)\right):\frac{1}{2}=89\)
\(90-\left(\frac{5}{2}\left(y+\frac{103}{50}\right)\right)=89.\frac{1}{2}\)
\(90-\left(\frac{5}{2}\left(y+\frac{103}{50}\right)\right)=\frac{89}{2}\)
\(\frac{5}{2}\left(y+\frac{103}{50}\right)=90-\frac{89}{2}\)
\(\frac{5}{2}\left(y+\frac{103}{50}\right)=\frac{180}{2}-\frac{89}{2}\)
\(\frac{5}{2}\left(y+\frac{103}{50}\right)=\frac{91}{2}\)
\(y+\frac{103}{50}=\frac{91}{2}.\frac{2}{5}\)
\(y+\frac{103}{50}=\frac{91}{5}\)
\(y=\frac{91}{5}-\frac{103}{50}\)
\(y=\frac{910}{50}-\frac{103}{50}\)
\(y=\frac{807}{50}\)
\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\right)\cdot100-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]:\frac{1}{2}=89\)
\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\cdot100-\left[\frac{5}{2}:\left(x+\frac{103}{50}\right)\right]\cdot2=89\)
\(\left(1-\frac{1}{10}\right)\cdot100-\frac{5}{2}:\left(x+\frac{103}{50}\right)\cdot2=89\)
\(\frac{9}{10}\cdot100-\frac{5}{2}\cdot2:\left(x+\frac{103}{50}\right)=89\)
\(90-5\cdot\left(x+\frac{103}{50}\right)=89\)
\(5\cdot\left(x+\frac{103}{50}\right)=1\)
\(x+\frac{103}{50}=\frac{1}{5}\)
\(x=-\frac{93}{50}\)