giải và biên luận phương trình sau:
(a+b)^2−(a^2+4ab+b^2)x+2ab(a+b)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có làm thì mới ra ko hỏi han nhìu
chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Điều kiện xác định của phương trình: \(a\ne\pm b\)
Biến đổi phương trình:
(x - a)(a - b) + (x - b)(a + b) = - 2ab
<=> ax - bx - a2 + ab + ax + bx - ab - b2 = - 2ab
<=> 2ax = a2 + b2 - 2ab
<=> 2ax = (a - b)2 (1)
Nếu \(a\ne0\) thì \(x=\frac{\left(a-b\right)^2}{2a}\)
Nếu a = 0 thì (1) có dạng 0x = b2. Do \(a\ne b\) nên \(b\ne0\)nên phương trình vô nghiệm.
Kết luận:
Nếu \(\hept{\begin{cases}a\ne b\\a\ne\pm b\end{cases}}\) thì \(S=\left\{\frac{\left(a-b\right)^2}{2a}\right\}\)
Còn lại, \(S=\varnothing\)
=> 2x + m - 4 = 0 hoặc 2mx - x + m = 0
<=> 2x + m - 4=0(1) hoặc (2m - 1)x +m =0(2)
(1)
Xét m = 0 thì pt có nghiệm duy nhất là x = 2
Xét m ≠ 0 thì pt có nghiệm là x = (4-m)/2
(2)
Xét m = 1/2 thì pt vô nghiệm.
Xét m ≠ 1/2 thì pt có nghiệm duy nhất là x= -1/(4m - 2)
Câu b thì bn viết ko rõ đề lắm nên k giải.