so sánh: A=\(\dfrac{10^{15}+1}{10^{16}+1}\) và B = \(\dfrac{10^{16}+1}{10^{17}+1}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Có:\(10A=\dfrac{10^{16}+10}{10^{16}+1}=\dfrac{10^{16}+1+9}{10^{16}+1}=\dfrac{10^{16}+1}{10^{16}+1}+\dfrac{9}{10^{16}+1}=1+\dfrac{9}{10^{16}+1}\)
\(10B=\dfrac{10^{17}+10}{10^{17}+1}=\dfrac{10^{17}+1+9}{10^{17}+1}=\dfrac{10^{17}+1}{10^{17}+1}+\dfrac{9}{10^{17}+1}=1+\dfrac{9}{10^{17}+1}\)
\(1+\dfrac{9}{10^{16}+1}>1+\dfrac{9}{10^{17}+1}\Rightarrow A>B\)
Vậy \(A>B\)