1, vói an pha < 90 độ
c/m \(\dfrac{1-tananpha}{1+tananpha}\) = \(\dfrac{cosanpha-sinanpha}{cosanpha+sinanpha}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Xét ΔBAC vuông tại A có \(\cos B=\dfrac{AB}{BC}\)
=>AB/BC=1/2
hay AB=1/2BC
Câu 4:
Ta có: AM=1/2BC
nên AM=BM=CM
Xét ΔMAB có MA=MB
nên ΔMAB cân tại M
=>\(\widehat{MAB}=\widehat{B}\)
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
=>\(\widehat{MAC}=\widehat{C}\)
Xét ΔABC có \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^0\)
=>\(2\cdot\left(\widehat{BAM}+\widehat{CAM}\right)=180^0\)
=>\(\widehat{BAC}=90^0\)
\(2.S_{\Delta ABC}=AB.AC=AH.BC\\ \Rightarrow AB^2.AC^2=AH^2.BC^2\)
Tam giác ABC vuông tại A \(\Rightarrow AB^2+AC^2=BC^2\) ( Định lý Pitago)
\(\Rightarrow\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{AB^2+AC^2}{AB^2.AC^2}=\dfrac{BC^2}{AH^2.BC^2}=\dfrac{1}{AH^2}\)
ta có : \(sin^2\alpha+cos^2\alpha=1\Leftrightarrow sin^2\alpha+\dfrac{9}{16}=1\Leftrightarrow sin^2\alpha=\dfrac{7}{16}\)
\(\Leftrightarrow sin\alpha=\pm\dfrac{\sqrt{7}}{4}\)
với \(sin\alpha=\dfrac{\sqrt{7}}{4}\)\(\Rightarrow tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{\sqrt{7}}{4}}{\dfrac{3}{4}}=\dfrac{\sqrt{7}}{3}\) \(\Rightarrow cot=\dfrac{3}{\sqrt{7}}\)
với \(sin\alpha=\dfrac{-\sqrt{7}}{4}\)\(\Rightarrow tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{-\sqrt{7}}{4}}{\dfrac{3}{4}}=\dfrac{-\sqrt{7}}{3}\) \(\Rightarrow cot=\dfrac{-3}{\sqrt{7}}\)
vậy \(sin\alpha=\pm\dfrac{\sqrt{7}}{4}\) ; \(tan\alpha=\pm\dfrac{\sqrt{7}}{3}\) ; \(cot=\pm\dfrac{3}{\sqrt{7}}\)
\(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1}{3}-\dfrac{x+1}{324}\)
\(\dfrac{1}{3}-\dfrac{1}{x+1}=\dfrac{1}{3}-\dfrac{x+1}{324}\)
\(\dfrac{1}{x+1}=\dfrac{x+1}{324}\)
\(\left(x+1\right)^2=324=18^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=18\\x+1=-18\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=17\\x=-19\end{matrix}\right.\)
Ta có \(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{1}{3}-\dfrac{x+1}{324}\)
\(\Rightarrow\)\(\dfrac{4-3}{3.4}+\dfrac{5-4}{4.5}+\dfrac{6-5}{5.6}+...+\dfrac{\left(x+1\right)-x}{x\left(x+1\right)}=\dfrac{1}{3}-\dfrac{x+1}{324}\)
\(\Rightarrow\)\(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1}{3}-\dfrac{x+1}{324}\)
\(\Rightarrow\)\(\dfrac{1}{3}-\dfrac{1}{x+1}=\dfrac{1}{3}-\dfrac{x+1}{324}\)
\(\Rightarrow\)\(\dfrac{1}{3}-\dfrac{1}{3}=-\dfrac{x+1}{324}+\dfrac{1}{x+1}\)
\(\Rightarrow\)\(\dfrac{1}{x+1}-\dfrac{x+1}{324}=0\)
\(\Rightarrow\)\(\dfrac{1}{x+1}=\dfrac{x+1}{324}\)
\(\Rightarrow\)(x+1).(x+1)=324
\(\Rightarrow\)(x+1)2=324
\(\Rightarrow\)(x+1)2 = 182 = (-18)2
TH1: (x+1)2 = 182
\(\Rightarrow\)x+1 = 18
\(\Rightarrow\)x = 17
TH2: (x+1)2 = (-18)2
\(\Rightarrow\)x+1 = -18
\(\Rightarrow\)x = -19
Vậy x\(\in\)\(\left\{17;-19\right\}\)
Lời giải:
Với một góc \(0< a< 90^0\) thì \(\cos a\neq 0\).
Ta có:
\(\frac{\cos a-\sin a}{\cos a+\sin a}=\frac{1-\frac{\sin a}{\cos a}}{1+\frac{\sin a}{\cos a}}\) (chia cả tử và mẫu cho \(\cos a\))
\(=\frac{1-\tan a}{1+\tan a}\) (đpcm)