tính các lũy thừa sau :
\(^{^{555^2}2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 + 3 i 3 = 2 3 + 3. 2 2 .3i + 3.2. 3 i 2 + 3 i 3 = −46 + 9i
a: \(3\cdot3\cdot3\cdot3\cdot3=3^5\)
b: \(y\cdot y\cdot y\cdot y=y^4\)
c: \(5\cdot p\cdot5\cdot p\cdot2\cdot q\cdot4\cdot q=25\cdot2\cdot4\cdot p^2q^2=2\cdot\left(10qp\right)^2\)
d: \(a\cdot a+b\cdot b+c\cdot c+d\cdot d\cdot d\cdot d=a^2+b^2+c^2+d^4\)
a)36.36.36.36...36 (108 lần)=36108
b)199.199.199.199...199 (200 lần)=199200
c)1000.1000.1000.1000...1000 (555 lần)=1000555
25 = 32 238 = 78310985281
88 = 16777216 999 = 9135.........899
37 = 2187 476 = 10779215329
67 = 279936 255 = 9765625
:v
Ta có :
\(555^2≡5\) (mod 10)
\(555^3≡5\) (mod 10)
\(555^5=555^2.555^3≡5.5≡5\) (mod 10)
=> \(555^777≡5\) (mod 10)
=> \(333^{555^{777}}\) đồng dư với \(333^5\)
Do \(333^5=333^2.333^3≡3\) (mod 10)
Vậy chữ số tận của \(333^{555^{777}}\) là 3 (1)
Làm tương tự ta được \(777^{555^{333}}\) có chữ số tận cùng là 7 (2)
Từ (1) và (2) suy ra:
\(333^{555^{777}}+777^{555^{333}}\)3 có chữ số tận cùng là 0
=> \(333^{555^{777}}+777^{555^{333}}\) chia hết cho 10.
Vậy B chia hết cho 10. ( đpcm )
Trả lời :
a) 83 = ( 23 )3 = 29
b) 39
c) 53
~~Học tốt~~