tim so nguyen n de gia tri bieu thuc sau la so nguyen to: 3n3-5n2-+3n-5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3n^3 - 5n^2 + 3n -5 = 3n(n^2+1) - 5(n^2+1) = (n^2+1)(3n-5)
Do biểu thức là số nguyên tố nên n^2 +1 hoặc 3n-5 bằng 1 số còn lại khác 1
TH1 : n^2 + 1 = 1 => n = 0. Thay vào bt có giá trị là -5 ( vô lí do số nguyên tố phải là số > 1 )
TH2 : 3n - 5 = 1 => n = 2 => Thỏa mãn
Vậy bt trên là snt khi và chỉ khi n = 2 và bt bằng 5
vì n-1 là Ư của 5 => n-1=1 hoặc 5
n-1=5=>n=6
n-1=1=>n=2
=> n =6 hoặc n=2
thong oy ấy k ik
n-1 là ước của 5 => n-1 E { 1;-1;5;-5 }
- với n-1=1 => n=2
- với n-1=-1 => n=0
- với n-1=5 => n=6
- với n-1= -5 => n=-4
vậy n={ 0;2;-4;6 }
b) A= -5/m-1 có giá trị nguyên => -5 chia hết cho m-1 hay m-1 E Ư(-5)={ -1; 1; 5; -5 }
- với m-1= -1 => m=0
- với m-1= 1 => m = 2
- với m-1=5 => m=6
- m-1= -4 => m= --3
vậy m={ 0;2;-3;6 }
Ta có :
\(\frac{3n+4}{n-1}=\frac{3n-3}{n-1}+\frac{7}{n-1}=3+\frac{7}{n-1}\) nguyên
<=> n - 1 \(\in\) Ư(7) = {-7; -1; 1; 7}
<=> n \(\in\) {-6; 0; 2; 8}
Lời giải:
Ta thấy:
\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)
\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)
Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.
Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$
$\Rightarrow n=2$
Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)
Vậy $n=2$
Lời giải:
Ta thấy:
\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)
\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)
Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.
Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$
$\Rightarrow n=2$
Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)
Vậy $n=2$