CMR:\(\sqrt{2}+\sqrt{3};\sqrt{2}+\sqrt{3}+\sqrt{5}\) không là các số hữu tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\dfrac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}-\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}\right)\left(\dfrac{\sqrt{3}-1}{3\sqrt{2}-\sqrt{6}}\right)\)
\(=\dfrac{5+2\sqrt{6}-5+2\sqrt{6}}{-1}\cdot\dfrac{1}{\sqrt{6}}\)
=-4
Đặt \(\sqrt[3]{5\sqrt[]{2}+7}-\sqrt[3]{5\sqrt[]{2}-7}=x>0\)
\(\Rightarrow x^3=14-3\left(\sqrt[3]{5\sqrt[]{2}+7}-\sqrt[3]{5\sqrt[]{2}-7}\right)\sqrt[3]{\left(5\sqrt[]{2}+7\right)\left(5\sqrt[]{2}-7\right)}\)
\(\Rightarrow x^3=14-3x.\sqrt[3]{\left(5\sqrt[]{2}\right)^2-7^2}\)
\(\Rightarrow x^3=14-3x\)
\(\Rightarrow x^3+3x-14=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+2x+7\right)=0\)
\(\Rightarrow x=2\)
a: Sửa đề: căn 6+2căn 5-căn 5
\(a=\dfrac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{\sqrt{5}+1-\sqrt{5}}=\dfrac{2}{1}=2\)
b: \(a^3=2-\sqrt{3}+2+\sqrt{3}+3a\)
=>a^3-3a-4=0
=>a^3-3a=4
\(\dfrac{64}{\left(a^2-3\right)^3}-3a=\left(\dfrac{4}{a^2-3}\right)^3-3a\)
\(=\left(\dfrac{a^3-3a}{a^2-3}\right)^3-3a=a^3-3a\)
=4
Ta có:
\(\sqrt{2\sqrt{3\sqrt{4....\sqrt{2017}}}}\)
< \(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2016\sqrt{2018}}}}}\)
\(=\sqrt{2\sqrt{3\sqrt{4...\sqrt{2017^2-1}}}}\)
< \(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2015.2017}}}}\)
.......................................................................
< \(\sqrt{2.4}< \sqrt{9}=3\)
Ta có: \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-3x+8\sqrt{x}-5-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{2}{3}\)
\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}\le0\)
\(\Leftrightarrow A\le\dfrac{2}{3}\)
Lời giải:
Giả sử $\sqrt{2}+\sqrt{3}=a$ là một số hữu tỉ.
\(\Rightarrow (\sqrt{2}+\sqrt{3})^2=a^2\)
\(\Leftrightarrow 5+2\sqrt{6}=a^2\Rightarrow \sqrt{6}=\frac{a^2-5}{2}\) là số hữu tỉ.
Đặt \(\sqrt{6}=\frac{a^2-5}{2}=\frac{m}{n}(m,n\in\mathbb{Z}^+; (m,n)=1)\)
\(\Rightarrow 6=\frac{m^2}{n^2}\Rightarrow m^2=6n^2\vdots 3\)
\(\Rightarrow m\vdots 3\Rightarrow 6n^2=m^2\vdots 9\Rightarrow n^2\vdots 3\Rightarrow n\vdots 3\). Vậy $m,n$ cùng có ước chung là $3$ (vô lý vì $(m,n)=1$). Do đó điều giả sử là sai. Nghĩa là $\sqrt{2}+\sqrt{3}$ không phải số hữu tỉ.
---------------------------------
Giả sử $\sqrt{2}+\sqrt{3}+\sqrt{5}=b$ là số hữu tỉ
\(\Leftrightarrow \sqrt{2}+\sqrt{3}=b-\sqrt{5}\)
\(\Rightarrow 5+2\sqrt{6}=b^2+5-2b\sqrt{5}\) (bình phương 2 vế)
\(\Leftrightarrow 2\sqrt{6}=b^2-2b\sqrt{5}\)
\(\Rightarrow 24=b^4+20b^2-4b^3\sqrt{5}\)
\(\Leftrightarrow \sqrt{5}=\frac{b^4+20b^2-24}{4b^3}\) là số hữu tỉ.
Đặt \(\sqrt{5}=\frac{m}{n}(m,n\in\mathbb{Z}^+, (m,n)=1)\)
\(\Rightarrow 5=\frac{m^2}{n^2}\Rightarrow m^2=5n^2\)
\(\Rightarrow m^2\vdots 5\Rightarrow m\vdots 5\Rightarrow 5n^2=m^2\vdots 25\Rightarrow n^2\vdots 5\Rightarrow n\vdots 5\)
Như vậy $m,n$ có ước chung là $5$ (vô lý vì $(m,n)=1$). Do đó điều giả sử là sai. Tức là $\sqrt{2}+\sqrt{3}+\sqrt{5}$ không là số hữu tỉ.